WritingYarnApps
Hadoop MapReduce Next Generation - Writing YARN Applications

® Hadoop MapReduce Next Generation - Writing YARN Applications
® Purpose
® Concepts and Flow
® Interfaces
® Writing a Simple Yarn Application
© Writing a simple Client
© Writing an ApplicationMaster
* FAQ

How can | distribute my application's jars to all of the nodes in the YARN cluster that need it?

How do | get the ApplicationMaster's ApplicationAttemptld?

My container is being killed by the Node Manager

How can my ApplicationMaster kill a container? Releasing it via AMRMProtocol#allocate does not seem to work.
® Useful Links

[e]
[e]
[e]
[e]

Purpose

This document describes, at a high-level, the way to implement new Applications for YARN.

Concepts and Flow

The general concept is that an 'Application Submission Client' submits an 'Application’ to the YARN Resource Manager. The client communicates with the
ResourceManager using the 'ClientRMProtocol' to first acquire a new 'Applicationld’ if needed via ClientRMProtocol#getNewApplication and then submit
the 'Application’ to be run via ClientRMProtocol#submitApplication. As part of the ClientRMProtocol#submitApplication call, the client needs to provide
sufficient information to the ResourceManager to 'launch’ the application's first container i.e. the ApplicationMaster. You need to provide information such
as the details about the local files/jars that need to be available for your application to run, the actual command that needs to be executed (with the
necessary command line arguments), any Unix environment settings (optional), etc. Effectively, you need to describe the Unix process(es) that needs to
be launched for your ApplicationMaster.

The YARN ResourceManager will then launch the ApplicationMaster (as specified) on an allocated container. The ApplicationMaster is then expected to
communicate with the ResourceManager using the 'AMRMProtocol'. Firstly, the ApplicationMaster needs to register itself with the ResourceManager. To
complete the task assigned to it, the ApplicationMaster can then request for and receive containers via AMRMProtocol#allocate. After a container is
allocated to it, the ApplicationMaster communicates with the NodeManager using ContainerManager#startContainer to launch the container for its task. As
part of launching this container, the ApplicationMaster has to specify the ContainerLaunchContext which, similar to the ApplicationSubmissionContext, has
the launch information such as command line specification, environment, etc. Once the task is completed, the ApplicationMaster has to signal the Resource
Manager of its completion via the AMRMProtocol#finishApplicationMaster.

Meanwhile, the client can monitor the application's status by querying the ResourceManager or by directly querying the ApplicationMaster if it supports
such a service. If needed, it can also kill the application via ClientRMProtocol#forceKillApplication.

Interfaces

The interfaces you'd most like be concerned with are:

® ClientRMProtocol - Client\<--\>ResourceManager\
The protocol for a client that wishes to communicate with the ResourceManager to launch a new application (i.e. the ApplicationMaster), check on
the status of the application or kill the application. For example, a job-client (a job launching program from the gateway) would use this protocol.

* AMRMProtocol - ApplicationMaster\<--\>ResourceManager\
The protocol used by the ApplicationMaster to register/unregister itself to/from the ResourceManager as well as to request for resources from the
Scheduler to complete its tasks.

® ContainerManager - ApplicationMaster\<--\>NodeManager\
The protocol used by the ApplicationMaster to talk to the NodeManager to start/stop containers and get status updates on the containers if
needed.

Writing a Simple Yarn Application

Writing a simple Client

® The first step that a client needs to do is to connect to the ResourceManager or to be more specific, the ApplicationsManager (AsM) interface of
the ResourceManager.

https://cwiki.apache.org/confluence/display/HADOOP2/MapReduce
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Cl i ent RVProt ocol applicati onsManager;
Yar nConfi gurati on yarnConf = new YarnConfiguration(conf);
I net Socket Addr ess rmAddress =
Net Uti | s. creat eSocket Addr (yar nConf . get (
Yar nConf i gur ati on. RM_ADDRESS,
Yar nConf i gur ati on. DEFAULT_RM ADDRESS)) ;
LOG i nfo("Connecting to ResourceManager at " + rmAddress);
configuration appsManager Server Conf = new Configuration(conf);
appsManager Ser ver Conf . set O ass(
Yar nConf i gurati on. YARN_SECURI TY_I NFO,
ClientRvBecuritylnfo.class, Securitylnfo.class);
appl i cationsManager = ((CientRVProtocol) rpc.getProxy(
Client RWProtocol.class, rmAddress, appsManager Server Conf));

® Once a handle is obtained to the ASM, the client needs to request the ResourceManager for a new Applicationld.

Get NewAppl i cati onRequest request =
Recor ds. newRecor d(Get NewAppl i cat i onRequest . cl ass);
Get NewAppl i cati onResponse response =
appl i cati onsManager . get NewAppl i cati on(request);
LOG i nfo(" Got new Applicationld=" + response.getApplicationld());

® The response from the ASM for a new application also contains information about the cluster such as the minimum/maximum resource
capabilities of the cluster. This is required so that to ensure that you can correctly set the specifications of the container in which the ApplicationMa
ster would be launched. Please refer to GetNewApplicationResponse for more details.
® The main crux of a client is to setup the ApplicationSubmissionContext which defines all the information needed by the ResourceManager to
launch the ApplicationMaster. A client needs to set the following into the context:
© Application Info: id, name
© Queue, Priority info: Queue to which the application will be submitted, the priority to be assigned for the application.
O User: The user submitting the application
© ContainerLaunchContext: The information defining the container in which the ApplicationMaster will be launched and run. The ContainerL
aunchContext, as mentioned previously, defines all the required information needed to run the ApplicationMaster such as the local
resources (binaries, jars, files etc.), security tokens, environment settings (CLASSPATH etc.) and the command to be executed.

/1 Create a new ApplicationSubm ssi onCont ext
Appl i cati onSubm ssi onCont ext appCont ext =
Recor ds. newRecor d(Appl i cati onSubni ssi onCont ext . cl ass) ;
/'l set the Applicationld
appCont ext . set Appl i cati onl d(appl d);
/] set the application nane
appCont ext . set Appl i cati onNanme(appNane) ;

/] Create a new container |aunch context for the AMs contai ner
Cont ai ner LaunchCont ext anmCont ai ner =
Recor ds. newRecor d(Cont ai ner LaunchCont ext . cl ass) ;

/1 Define the local resources required
Map<String, Local Resource> | ocal Resources =
new HashMap<String, Local Resource>();
/] Lets assune the jar we need for our ApplicationMaster is available in
/! HDFS at a certain known path to us and we want to make it available to
/1 the ApplicationMaster in the |aunched container
Path jarPath; // <- known path to jar file
FileStatus jarStatus = fs.getFileStatus(jarPath);
Local Resource amlar Rsrc = Records. newRecor d(Local Resource. cl ass);
/1 Set the type of resource - file or archive
/'l archives are untarred at the destination by the framework
amlar Rsr c. set Type(Local Resour ceType. FI LE);
/1 Set visibility of the resource
// Setting to nost private option i.e. this file will only
/1 be visible to this instance of the running application
amJar Rsrc. set Vi si bility(Local ResourceVisibility. APPLI CATI ON);
/1 Set the location of resource to be copied over into the
/1 working directory
amlar Rsrc. set Resource(ConverterUtils. get YarnUrl FronPat h(j arPath));

#
#
#
#
#
#
#
#
#
#
#
#
#

/1 Set tinestanp and length of file so that the franework

/1 can do basic sanity checks for the local resource

/] after it has been copied over to ensure it is the sanme

/1 resource the client intended to use with the application

amlar Rsr c. set Ti nest anp(j ar St at us. get Modi fi cati onTi me());

amlar Rsrc. set Si ze(j ar Status. getLen());

/1 The framework will create a symink called AppMaster.jar in the
/1 working directory that will be linked back to the actual file.
/'l The ApplicationMaster, if needs to reference the jar file, would
/1 need to use the symink filenane.

| ocal Resources. put ("AppMaster.jar", amlarRsrc);

/'l Set the local resources into the |aunch context

amCont ai ner. set Local Resour ces(| ocal Resources);

/1 Set up the environment needed for the |aunch context

Map<String, String> env = new HashMap<String, String>();

/| For exanple, we could setup the classpath needed.

/1 Assuming our classes or jars are available as local resources in the

/1 working directory fromwhich the conmand will be run, we need to append
/1 "." to the path.

/1 By default, all the hadoop specific classpaths will already be avail able
/1 in $CLASSPATH, so we should be careful not to overwite it.

String classPathEnv = "$CLASSPATH. ./*:";

env. put (" CLASSPATH', cl assPat hEnv);

anCont ai ner. set Envi ronnent (env);

/1 Construct the command to be executed on the |aunched cont ai ner
String command =

"${JAVA_HOVE}" + /bin/java" +

" MyAppMaster" +
argl arg2 arg3" +
" 1>" + ApplicationConstants. LOG DI R_ EXPANSI ON_VAR + "/stdout" +
" 2>" + ApplicationConstants. LOG DI R_EXPANSI ON_VAR + "/stderr";

Li st<String> commands = new ArrayList<String>();
commands. add(conmand) ;
/] add additional commands if needed

/1 Set the command array into the container spec
amCont ai ner . set Coomands(cormands) ;

/1 Define the resource requirenments for the container

/1 For now, YARN only supports nmenory so we set the nenory

/1 requirenents.

/1 1f the process takes nore than its allocated nmenory, it wll

/1 be killed by the franework.

/1 Memory being requested for should be I ess than max capability

/1 of the cluster and all asks should be a nultiple of the min capability.
Resource capability = Records. newRecor d(Resource. cl ass);

capability. set Menory(amvenory);

amCont ai ner . set Resource(capability);

/1 Set the container |launch content into the ApplicationSubm ssionContext
appCont ext . set AMCont ai ner Spec(anCont ai ner) ;

® After the setup process is complete, the client is finally ready to submit the application to the ASM.

/] Create the request to send to the Applicati onsManager
Submi t Appl i cati onRequest appRequest =

Recor ds. newRecor d(Submi t Appl i cati onRequest . cl ass);
appRequest . set Appl i cati onSubmi ssi onCont ext (appCont ext);

/1 Submt the application to the Applicati onsManager

/1 lgnore the response as either a valid response object is returned on
/| success or an exception thrown to denote the failure

appl i cati onsManager . subni t Appl i cati on(appRequest);

At this point, the ResourceManager will have accepted the application and in the background, will go through the process of allocating a container
with the required specifications and then eventually setting up and launching the ApplicationMaster on the allocated container.
There are multiple ways a client can track progress of the actual task.

© It can communicate with the ResourceManager and request for a report of the application via ClientRMProtocol#getApplicationReport.

Get Appl i cati onReport Request reportRequest =
Recor ds. newRecor d(Get Appl i cati onReport Request . cl ass);
report Request . set Appl i cati onl d(appld);
Get Appl i cati onReport Response report Response =
appl i cati onsManager . get Appl i cati onReport (report Request);
ApplicationReport report = reportResponse. getApplicationReport();

The ApplicationReport received from the ResourceManager consists of the following:

General application information: Applicationld, queue to which the application was submitted, user who submitted the application and the start
time for the application.

ApplicationMaster details: the host on which the ApplicationMaster is running, the rpc port (if any) on which it is listening for requests from clients
and a token that the client needs to communicate with the ApplicationMaster.

Application tracking information: If the application supports some form of progress tracking, it can set a tracking url which is available via Applicatio
nReport#getTrackingUrl that a client can look at to monitor progress.

ApplicationStatus: The state of the application as seen by the ResourceManager is available via ApplicationReport#getYarnApplicationState. If
the YarnApplicationState is set to FINISHED, the client should refer to ApplicationReport#getFinalApplicationStatus to check for the actual
success/failure of the application task itself. In case of failures, ApplicationReport#getDiagnostics may be useful to shed some more light on the
the failure.

If the ApplicationMaster supports it, a client can directly query the ApplicationMaster itself for progress updates via the host:rpcport information
obtained from the ApplicationReport. It can also use the tracking url obtained from the report if available.
© In certain situations, if the application is taking too long or due to other factors, the client may wish to kill the application. The
ClientRMProtocol supports the forceKillApplication call that allows a client to send a kill signal to the ApplicationMaster via the Resource
Manager. An ApplicationMaster if so designed may also support an abort call via its rpc layer that a client may be able to leverage.

Ki || ApplicationRequest kill Request =

Recor ds. newRecor d(Ki I | Appl i cati onRequest . cl ass);

ki | | Request . set Appl i cationl d(appld);
appl i cati onsManager.forceKill Application(kill Request);

Writing an ApplicationMaster

The ApplicationMaster is the actual owner of the job. It will be launched by the ResourceManager and via the client will be provided all the
necessary information and resources about the job that it has been tasked with to oversee and complete.

As the ApplicationMaster is launched within a container that may (likely will) be sharing a physical host with other containers, given the multi-
tenancy nature, amongst other issues, it cannot make any assumptions of things like pre-configured ports that it can listen on.

All interactions with the ResourceManager require an ApplicationAttemptld (there can be multiple attempts per application in case of failures).
When the ApplicationMaster starts up, the ApplicationAttemptld associated with this particular instance will be set in the environment. There are
helper apis to convert the value obtained from the environment into an ApplicationAttemptid object.

Map<String, String> envs = System getenv();
Appl icationAttenptld appAttenptID =

Recor ds. newRecor d(Appl i cati onAttenptld. cl ass);

if (!envs.containsKey(ApplicationConstants. APPLI CATI ON_ATTEMPT_I D ENV)) {

}

/1 app attenpt id should always be set in the env by the franework
throw new || egal Argunent Excepti on(
"ApplicationAttenptld not set in the environnent");

appAttenpt| D =

ConverterUils.toApplicationAttenptl!d(
envs. get (Appl i cati onConst ants. APPLI CATI ON_ATTEMPT_I D_ENV)) ;

® After an ApplicationMaster has initialized itself completely, it needs to register with the ResourceManager via

AMRMProtocol#registerApplicationMaster. The ApplicationMaster always communicate via the Scheduler interface of the ResourceManager.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

/1

Connect to the Schedul er of the ResourceManager.

Yar nConfi gurati on yarnConf = new YarnConfiguration(conf);
I net Socket Addr ess rmAddress =

Net Uti | s. creat eSocket Addr (yar nConf . get (
Yar nConf i gur ati on. RM_SCHEDULER_ADDRESS,
Yar nConf i gur ati on. DEFAULT_RM SCHEDULER_ADDRESS)) ;

LOG i nfo("Connecting to ResourceManager at " + rmAddress);
AMRMPr ot ocol resourceManager =

/1
/1
Il
/1
/1
/1

(AMRMPr ot ocol) rpc. get Proxy(AMRMPr ot ocol . cl ass, rmAddress, conf);

Regi ster the AMwith the RM

Set the required info into the registration request:
ApplicationAttenptl!d,

host on which the app master is running

rpc port on which the app master accepts requests fromthe client
tracking url for the client to track app master progress

Regi st er Appl i cati onMast er Request appMast er Request =

Recor ds. newRecor d(Regi st er Appl i cat i onMast er Request . cl ass) ;

appMast er Request . set Appl i cati onAttenpt| d(appAttenpt!D);
appMast er Request . set Host (appMast er Host nane) ;

appMast er Request . set RpcPor t (appMast er RpcPort) ;

appMast er Request . set Tracki ngUr| (appMast er Tr acki ngUr 1) ;

/1
/1
/1
/1
Il

The registration response is useful as it provides informati on about the
cluster.

Simlar to the Get NewApplicationResponse in the client, it provides
information about the min/nx resource capabilities of the cluster that
woul d be needed by the Applicati onMaster when requesting for containers.

Regi st er Appl i cati onMast er Response response =

resour ceManager . r egi st er Appl i cat i onMast er (appMast er Request) ;

The ApplicationMaster has to emit heartbeats to the ResourceManager to keep it informed that the ApplicationMaster is alive and still running.
The timeout expiry interval at the ResourceManager is defined by a config setting accessible via YarnConfiguration.
RM_AM_EXPIRY_INTERVAL_MS with the default being defined by YarnConfiguration.DEFAULT_RM_AM_EXPIRY_INTERVAL_MS. The
AMRMProtocol#allocate calls to the ResourceManager count as heartbeats as it also supports sending progress update information. Therefore,
an allocate call with no containers requested and progress information updated if any is a valid way for making heartbeat calls to the ResourceMa
nager.
Based on the task requirements, the ApplicationMaster can ask for a set of containers to run its tasks on. The ApplicationMaster has to use the Re
sourceRequest class to define the following container specifications:
© Hostname: If containers are required to be hosted on a particular rack or a specific host. "*' is a special value that implies any host will do.
© Resource capability: Currently, YARN only supports memory based resource requirements so the request should define how much
memory is needed. The value is defined in MB and has to less than the max capability of the cluster and an exact multiple of the min
capability.
© Priority: When asking for sets of containers, an ApplicationMaster may define different priorities to each set. For example, the Map-
Reduce ApplicationMaster may assign a higher priority to containers needed for the Map tasks and a lower priority for the Reduce tasks'
containers.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

/'l Resource Request
Resour ceRequest rsrcRequest = Records. newRecor d(Resour ceRequest . cl ass);

/] setup requirenents for hosts

/'l whether a particular rack/host is needed
/1 useful for applications that are sensitive
/1 to data locality

rsrcRequest . set Host Name("*");

/] set the priority for the request

Priority pri = Records. newRecord(Priority.class);
pri.setPriority(requestPriority);
rsrcRequest.setPriority(pri);

/] Set up resource type requirenents

/1 For now, only menory is supported so we set nenory requirenents
Resource capability = Records. newRecor d(Resource. cl ass);
capability. set Menory(contai ner Menory);

rsrcRequest . set Capabi lity(capability);

/'l set no. of containers needed
/1 matching the specifications
rsrcRequest . set NumCont ai ner s(nunCont ai ners) ;

® After defining the container requirements, the ApplicationMaster has to construct an AllocateRequest to send to the ResourceManager. The Alloca
teRequest consists of:
© Requested containers: The container specifications and the no. of containers being requested for by the ApplicationMaster from the Reso
urceManager.
© Released containers: There may be situations when the ApplicationMaster may have requested for more containers that it needs or due
to failure issues, decide to use other containers allocated to it. In all such situations, it is beneficial to the cluster if the ApplicationMaster
releases these containers back to the ResourceManager so that they can be re-allocated to other applications.
© Responseld: The response id that will be sent back in the response from the allocate call.
© Progress update information: The ApplicationMaster can send its progress update (range between to 0 to 1) to the ResourceManager.

Li st <Resour ceRequest > request edCont ai ners;
Li st <Cont ai ner | d> rel easedCont ai ners
Al | ocat eRequest req = Records. newRecord(Al | ocat eRequest. cl ass);

/1 The response id set in the request will be sent back in
/1 the response so that the ApplicationMaster can

/1l match it to its original ask and act appropriately.
reg. set Responsel d(rnRequest 1 D) ;

/1 Set ApplicationAttenptld
reg. set Applicati onAttenptl d(appAttenptiD);

/1 Add the list of containers being asked for
reg. addAl | Asks(request edCont ai ners);

/1 1f the ApplicationMaster has no need for certain

/1 containers due to over-allocation or for any other

/] reason, it can release themback to the ResourceManager
reg. addAl | Rel eases(rel easedCont ai ners);

/1 Assuming the ApplicationMaster can track its progress
reg. set Progress(current Progress);

Al | ocat eResponse al | ocat eResponse = resourceManager. al | ocate(req);

® The AllocateResponse sent back from the ResourceManager provides the
followmg information via the AMResponse object:
Reboot flag: For scenarios when the ApplicationMaster may get out of sync with the ResourceManager.
o Allocated containers: The containers that have been allocated to the ApplicationMaster.
© Headroom: Headroom for resources in the cluster. Based on this information and knowing its needs, an ApplicationMaster can make
intelligent decisions such as re-prioritizing sub-tasks to take advantage of currently allocated containers, bailing out faster if resources
are not becoming available etc.

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

© Completed containers: Once an ApplicationMaster triggers a launch an allocated container, it will receive an update from the ResourceM
anager when the container completes. The ApplicationMaster can look into the status of the completed container and take appropriate
actions such as re-trying a particular sub-task in case of a failure.
One thing to note is that containers will not be immediately allocated to the ApplicationMaster. This does not imply that the ApplicationMa
ster should keep on asking the pending count of required containers. Once an allocate request has been sent, the ApplicationMaster will
eventually be allocated the containers based on cluster capacity, priorities and the scheduling policy in place. The ApplicationMaster
should only request for containers again if and only if its original estimate changed and it needs additional containers.

/] Get AMResponse from Al | ocat eResponse
AMResponse anResp = al | ocat eResponse. get AMResponse() ;

/1l Retrieve list of allocated containers fromthe response
/1 and on each allocated container, lets assume we are |aunching
/1 the same job.
Li st <Cont ai ner> al | ocat edCont ai ners = anResp. get Al | ocat edCont ai ners();
for (Container allocatedContainer : allocatedContainers) {

LOG i nf o("Launchi ng shell command on a new container."

+ ", containerld=" + allocatedContainer.getld()

", contai ner Node=" + all ocatedContai ner.get Nodel d(). get Host ()
":" + all ocat edCont ai ner. get Nodel d() . get Port ()
", contai ner NodeURI =" + al | ocat edCont ai ner. get NodeHt t pAddr ess()
", containerState" + allocatedContainer.getState()
, contai ner Resour ceMenor y"
al | ocat edCont ai ner. get Resource() . get Menory());

+ 4+ + o+ o+ o+

/1 Launch and start the container on a separate thread to keep the main
/1 thread unbl ocked as all containers may not be allocated at one go.
LaunchCont ai ner Runnabl e runnabl eLaunchCont ai ner =

new LaunchCont ai ner Runnabl e(al | ocat edCont ai ner) ;
Thread | aunchThread = new Thread(runnabl eLaunchCont ai ner);
| aunchThr eads. add(| aunchThr ead) ;
| aunchThread. start();

}

/] Check what the current available resources in the cluster are
Resour ce avai |l abl eResources = anResp. get Avai | abl eResour ces();

/1 Based on this information, an ApplicationMaster can nake appropriate
/| decisions

/] Check the conpleted containers
/'l Let's assunme we are keeping a count of total conpleted containers,
/1 containers that failed and ones that conpleted successfully.
Li st <Cont ai ner St at us> conpl et edCont ai ners =
amResp. get Conpl et edCont ai ner sSt at uses();
for (ContainerStatus containerStatus : conpletedContainers) {
LOG i nfo("Got container status for containerlD="

+ cont ai ner St at us. get Cont ai ner1d()

+ ", state=" + containerStatus.getState()

+ ", exitStatus=" + containerStatus.getExitStatus()

+ ", diagnostics=" + containerStatus. getDi agnostics());

int exitStatus = containerStatus.getExitStatus();
if (0!=-exitStatus) {
/1 container failed
/1 -100 is a special case where the container
/'l was aborted/pre-enpted for sone reason
if (-100 != exitStatus) {
/] application job on container returned a non-zero exit code
/1 counts as conpl eted
numConpl et edCont ai ners. i ncrement AndGet () ;
nuntai | edCont ai ners. i ncrement AndGet () ;
}
el se {
/1 sonething el se bad happened
/1 app job did not conplete for sone reason
/1 we should re-try as the container was |ost for sone reason
/1 decrenenting the requested count so that we ask for an
/1 additional one in the next allocate call.

#
#
#
#
#
#
#
#
#

nunRequest edCont ai ners. decr enent AndGet () ;
/1 we do not need to release the container as that has already
/1 been done by the ResourceManager/ NodeManager .
}
}
el se {
/1 nothing to do
/'l container conpleted successfully
nunConpl et edCont ai ners. i ncrenent AndGet () ;
nunBuccessful Cont ai ners. i ncrement AndGet () ;

® After a container has been allocated to the ApplicationMaster, it needs to follow a similar process that the Client followed in setting up the Contain
erLaunchContext for the eventual task that is going to be running on the allocated Container. Once the ContainerLaunchContext is defined, the Ap
plicationMaster can then communicate with the ContainerManager to start its allocated container.

/1 Assum ng an all ocated Contai ner obtained from AVResponse
Cont ai ner cont ai ner;
/] Connect to Container Manager on the allocated container
String cm pPortStr = container.getNodeld().getHost() + ":"
+ cont ai ner. get Nodel d() . get Port();
I net Socket Address cnmAddress = Net Uil s. createSocket Addr (cm pPortStr);
Cont ai ner Manager cm =
(Cont ai ner Manager) r pc. get Proxy(Cont ai ner Manager . cl ass, cmAddress, conf);

/1 Now we setup a Contai ner LaunchCont ext
Cont ai ner LaunchContext ctx =
Recor ds. newRecor d(Cont ai ner LaunchCont ext . cl ass) ;

ct x. set Contai nerld(container.getld());
ct x. set Resour ce(cont ai ner. get Resource());

try {
ctx. set User (User Groupl nf or mati on. get Current User () . get Short User Nane()) ;
} catch (I CException e) {
LOG i nf o(
"Getting current user failed when trying to launch the container"”,
+ e. get Message());

/1 Set the environnent

Map<String, String> uniXxEnv;

/1 Setup the required env.

/'l Please note that the |aunched container does not inherit
/1 the environnent of the ApplicationMaster so all the

/'l necessary environnent settings will need to be re-setup
/1 for this allocated container.

ct x. set Envi ronnment (uni xEnv) ;

/1 Set the local resources
Map<String, Local Resource> | ocal Resources =
new HashMap<String, Local Resource>();
/1 Again, the local resources fromthe ApplicationMaster is not copied over
/1 by default to the allocated container. Thus, it is the responsibility
/1 of the ApplicationMaster to setup all the necessary |ocal resources
/1 needed by the job that will be executed on the allocated container.

/1 Assunme that we are executing a shell script on the allocated container
/1 and the shell script's location in the filesystemis known to us.

Pat h shel | Scri pt Pat h;

Local Resource shel | Rsrc = Records. newRecor d(Local Resour ce. cl ass);

shel I Rsrc. set Type(Local ResourceType. FI LE);

#
#
#
#
#
#
#

shel | Rsrc. setVisibility(Local ResourceVisibility. APPLI CATION);
shel I Rsrc. set Resour ce(

ConverterUtils. getYarnU | FronJRI (new URI (shel | ScriptPath)));
shel I Rsrc. set Ti nest anp(shel | Scri pt Pat hTi mest anp) ;
shel | Rsrc. set Si ze(shel | Scri pt Pat hLen) ;
| ocal Resour ces. put ("MyExecShel | . sh", shel | Rsrc);

ct x. set Local Resour ces(| ocal Resources);

/1 Set the necessary command to execute on the allocated container
String command = "/bin/sh ./ MExecShell.sh"
+ " 1>" + ApplicationConstants. LOG DI R_ EXPANSI ON_VAR + "/stdout"
+ " 2>" + ApplicationConstants. LOG DI R_EXPANSI ON_VAR + "/stderr";

Li st <String> conmands = new ArrayList<String>();
commands. add(cormand) ;
ct x. set Commands(conmands) ;

/1 Send the start request to the ContainerManager

St art Cont ai ner Request startReq = Records. newRecor d(St art Cont ai ner Request . cl ass) ;
st art Req. set Cont ai ner LaunchCont ext (ct x) ;

cm start Contai ner(startReq);

®* The ApplicationMaster, as mentioned previously, will get updates of completed containers as part of the response from the
AMRMProtocol#allocate calls. It can also monitor its launched containers pro-actively by querying the ContainerManager for the status.

Get Cont ai ner St at usRequest statusReq =
Recor ds. newRecor d(Get Cont ai ner St at usRequest . cl ass);
st at usReq. set Cont ai nerl d(contai ner.getld());
Get Cont ai ner St at usResponse statusResp = cm get Cont ai ner St at us(st at usReq) ;
LOG i nf o(" Cont ai ner Status"
+ ", id=" + container.getld()
+ ", status=" + statusResp.getStatus());

FAQ

How can | distribute my application's jars to all of the nodes in the YARN cluster that need it?

You can use the LocalResource to add resources to your application request. This will cause YARN to distribute the resource to the ApplicationMaster
node. If the resource is a tgz, zip, or jar - you can have YARN unzip it. Then, all you need to do is add the unzipped folder to your classpath. For example,
when creating your application request:

Fil e packageFile = new Fil e(packagePath);
Ul packageUrl = ConverterUtils. getYarnUrl FronPat h(
Fi | eCont ext . get Fi | eCont ext . nekeQual i fi ed(new Pat h(packagePat h)));

packageResour ce. set Resour ce(packageUrl);

packageResour ce. set Si ze(packageFil e.length());

packageResour ce. set Ti nest anp(packageFi |l e. | ast Modi fied());
packageResour ce. set Type(Local Resour ceType. ARCHI VE) ;
packageResource. set Vi si bility(Local ResourceVisibility. APPLI CATI ON);

resour ce. set Menory(nenory)

cont ai ner Ct x. set Resour ce(resource)

cont ai ner Ct x. set Conmands(| mmut abl eLi st . of (
"java -cp './package/*' sone.class.to.Run
+ "1>" + ApplicationConstants. LOG DI R_EXPANSI ON_VAR + "/ st dout
+ "2>" + ApplicationConstants. LOG DI R_ EXPANSI ON_VAR + "/stderr"))

#
#
#
#

cont ai ner Ct x. set Local Resour ces(
Col | ecti ons. si ngl et onMap(" package", packageResource))
appCt x. set Appl i cati onl d(appl d)
appCt x. set User (user . get Shor t User Nane)
appCt x. set AMCont ai ner Spec(cont ai ner Ct x)
request . set Appl i cati onSubmi ssi onCont ext (appCt x)
appl i cati onsManager . subni t Appl i cati on(request)

As you can see, the setLocalResources command takes a map of names to resources. The name becomes a sym link in your application's cwd, so you
can just refer to the artifacts inside by using ./package/*. Note: Java's classpath (cp) argument is VERY sensitive. Make sure you get the syntax EXACTLY
correct.

Once your package is distributed to your ApplicationMaster, you'll need to follow the same process whenever your ApplicationMaster starts a new
container (assuming you want the resources to be sent to your container). The code for this is the same. You just need to make sure that you give your App
licationMaster the package path (either HDFS, or local), so that it can send the resource URL along with the container ctx.

How do I get the ApplicationMaster's ApplicationAttemptld?

The ApplicationAttemptld will be passed to the ApplicationMaster via the environment and the value from the environment can be converted into an Applica
tionAttemptld object via the ConverterUtils helper function.

My container is being killed by the Node Manager

This is likely due to high memory usage exceeding your requested container memory size. There are a number of reasons that can cause this. First, look
at the process tree that the node manager dumps when it kills your container. The two things you're interested in are physical memory and virtual memory.

If you have exceeded physical memory limits your app is using too much physical memory. If you're running a Java app, you can use -hprof to look at what
is taking up space in the heap. If you have exceeded virtual memory, things are slightly more complicated.

How can my ApplicationMaster kill a container? Releasing it via AMRMProtocol#allocate does
not seem to work.
A container can only be released back to the ResourceManager if it has not been launched. To kill a launched container, the ApplicationMaster can send a

stop command to the container via ContainerManager#stopContainer(StopContainerRequest request). This will trigger a kill event to the launched
container and this container will eventually be part of the list of completed Containers in the RM's response to the AM on an AMRMProtocol#allocate call.

Useful Links

® Map Reduce Next Generation Architecture
® Map Reduce Next Generation Scheduler

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
https://issues.apache.org/jira/secure/attachment/12486023/MapReduce_NextGen_Architecture.pdf
http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/

	WritingYarnApps

