
New compact binary protocol

Description

There's been numerous discussion on how to implement a new more compact binary protocol. The discussions become hard to follow after a while so this 
page is intended to be used as an easy to use summary that can later be formalized into different options and finally become a specification. Help needed 
to fill this page with further details, suggestions and pros/cons for each suggestion.

Implementation suggestions

Encode i32 and i64 types saved as variable size integers

Suggestion Pros Cons

ZIP encoding (variable length encoding) for only positive values save a max of 3 bytes for small 
ints

user has to specify the new type

Base 128 + zigzag, borrow from protocol buffers?   user has to specify whether zigzag needs to be used for efficiency

As the user knows best about his data he can choose whichever he wants and save bytes. This means we need more type modifiers for these types

Remove / reduce the size of field prefix tags

Suggestion Pros Cons

Reduce from 3 bytes per field to 1 byte, see mail Retains versioning support Only good for dense structs
Breaks down if type modifiers/hints need to go into 
type field

1-byte type-and-modifier, variable length int for field id    

Drop field prefix altogether saves tons of space no versioning is possible

Use a per-struct variable length bitset to specify which all fields present . 
Preserve type info

Saves 1 bit/field and adds 1 byte/ 
7 fields

Bad for sparse objects
Implies fields must be ordered by id in encoding

Type changes

Suggestion Pros Cons

ZIP encoding (variable length encoding) for only positive 
values

save a max of 3 bytes for small ints user has to specify the new 
type

Unsigned integers Would alleviate need for separate zigzag type Unsigned ints don't exist in 
all languages

Type annotations Allows us to specify encoding details about the fields/types that the 
protocols may or may not use

 

Variable ints for string, binary, and collection sizes Will often shrink to one or two bytes  

Have two types BOOLEAN_TRUE and BOOLEAN_FALSE 
instead of type and value

Save a byte on every boolean  

Better usage of type byte

If we spent one whole byte for type it is quite a waste considering we have ~15 types . That is a wastage of almost 4 bits on EACH field. Let us have two 
types of types. One with extra information and one which does not . Let us take the 5 least significant bit (LSB) to represent them. Let us make use of the 3 
most significant bits (MSB) for types with extra information

7 6 5 4 3 2 1 0

The 5 LSB (green) could be used for these types

VOID
STOP
BOOLEAN_TRUE
BOOLEAN_FALSE
DOUBLE
I16
I32
I64

The 3 MSB (red) can be used for a max 7 types. The 5 MSB can be used in these types for length ,value etc (depending on the type)

http://publists.facebook.com/pipermail/thrift/2008-January/000275.html


STRING
SET
LIST
MAP
POSITIVE_I32
STRUCT
EXTERN_STRING 

Information sources

2008 jan mail thread

jira ticket

TDenseProtocol

http://publists.facebook.com/pipermail/thrift/2008-January/000275.html
https://issues.apache.org/jira/browse/THRIFT-110
http://svn.apache.org/viewvc/incubator/thrift/trunk/lib/cpp/src/protocol/TDenseProtocol.h?view=log

	New compact binary protocol

