
ThriftUsageObjectiveC

Before using Thrift for Objective-C
Supported Platforms
Installation
Support of ARC
How to Link the Runtime Library

Getting started
Sample Download
Requirements
Creating the Thrift file
Create the Objective-C client app
Creating the Java Server
Running

Objective-C specific Notes
Method signature
Attributes
Initialization
String type
Binary type
Collection types
Client Side Transports
Asynchronous Client

Before using Thrift for Objective-C

Supported Platforms

Thrift supports the following platforms as well as other platforms.

Mac OS X 10.5 or later
iOS 4 or later

cocoa represents the above platforms. The runtime library and the generated code adapt themselves to the platforms automatically. Thus, please use cocoa
for them.

% thrift --gen cocoa idl.thrift

Installation

See .this page

Support of ARC

Since iOS 5 and Mac OS 10.7, Objective-C supports Automatic Reference Counting (ARC) in addition to the conventional object life cycle management by
retain/release (non-ARC).

Thrift 0.8.0 does not support ARC. If you want use it within an app in ARC mode, you need to compile the thrift runtime library in non-ARC mode by specifyi
.ng -fno-objc-arc flag

Use or later, if you need to use thrift in ARC mode. It supports both ARC and non-ARC. Both the runtime library and generated Objective-C code 0.9.0-dev
can be compiled both in ARC mode and in non-ARC mode. They automatically adapt themselves to the compilation modes without any switch.

How to Link the Runtime Library

You need to link the runtime library of Thrift with your project. The location of the runtime library: thrift-x.x.x/lib/cocoa/src

There are two options.

If your project is small, you can add the source files of the runtime library into your project.

When you modify Thrift

Use instead of and use instead of inside the runtime library. The thrift compiler should generate retain_stub retain release_stub release retain_st
 instead of . .ub/release_stub retain/release See this for detail

#
http://stackoverflow.com/questions/6646052/how-can-i-disable-arc-for-a-single-file-in-a-project
http://stackoverflow.com/questions/6646052/how-can-i-disable-arc-for-a-single-file-in-a-project
https://builds.apache.org//job/Thrift/lastSuccessfulBuild/artifact/thrift/
http://svn.apache.org/viewvc/thrift/trunk/lib/cocoa/src/TObjective-C.h?view=markup

Otherwise, if you use Thrift within several sub projects, you must make a framework from the source files of the runtime library. Since ways of
making a framework is a bit complicated and exceeds this guide, please consult other sites. We expect somebody will contribute a script that
makes a framework automatically.

The rest of this guide assumes we directly add the runtime library into our sample project and we don't make the framework.

Getting started
This tutorial will walk you through creating a sample project which is a bulletin board application using Thrift. It consists of an iOS client app written in
Objective-C and a Java server. It is assumed that you will have a basic knowledge of Objective-C and Xcode to complete this tutorial. Note that the client
runs on Mac OS with small modification.

|align=righthttp://staff.aist.go.jp/hirano-s/thrift/result.tiff

Acknowledgment: A part of this tutorial was borrowed from tutorial.newacct's

Sample Download

You can download the sample project . It includes:from here

The whole myThriftApp project
the runtime library in thrift/ directory from 0.8.0-dev (You should replace this with the latest one.)
idl.thrift
Server.java and .java in gen-java/ directory BulletinBoard

Requirements

Make sure that your system meets the requirements as noted in .ThriftRequirements

Thrift 0.9.0+ (0.8.0-dev+)
iOS 4+ or Mac OS X 10.5+
Xcode 4.2+

The following are required for the Java server; but, not the Objective-C client.

Java 1.4+ (already installed in Mac OS X 10.5+)
SLF4J (available at) http://www.slf4j.org/download.html

Creating the Thrift file

We will use a simple thrift IDL file, . This defines a bulletin board service. You can upload your message and date using method. myThriftApp/idl.thrift add()
 method returns a list of the struct so that we demonstrate how to send/receive an array of structs in Objective-C.get()

// idl.thrift
struct Message {
 1: string text,
 2: string date
}

service BulletinBoard {
 void add(1: Message msg),
 list<Message> get()

}

Run the thrift compiler to generate the stub files (e.g. gen-cocoa/idl.h and gen-cocoa/idl.m).

thrift --gen java idl.thrift
thrift --gen cocoa idl.thrift

Create the Objective-C client app

The objective-c client is a simple app that allows the user to fill out a text field add/get them from the server.

Create a new iOS single view project.
Product name is .myThriftApp
Check to Use Automatic Reference Counting

http://staff.aist.go.jp/hirano-s/thrift/result.tiff
http://staff.aist.go.jp/hirano-s/thrift/myThriftApp.zip
#
https://cwiki.apache.org/confluence/display/THRIFT/ThriftRequirements
http://www.slf4j.org/download.html

Add generated files.
Right click on myThriftApp and select . Choose "gen-cocoa".Add files to "myThirtApp" http://staff.aist.go.jp/hirano-s

|align=right/thrift/add.tiff
Add the runtime library.

Right click on myThriftApp and select . Choose "thrift-x.x.x/lib/cocoa/src".Add files to "myThirtApp"
rename group name from to .src thrift |align=righthttp://staff.aist.go.jp/hirano-s/thrift/group.tiff

Setup header search path in build settings.
Always Search User Path: YES |align=righthttp://staff.aist.go.jp/hirano-s/thrift/path2.tiff
Framework Search Paths: add and $(SRCROOT) $(inherited) |alignhttp://staff.aist.go.jp/hirano-s/thrift/path.tiff

 =right

Copy the following text to .hViewController

#import <UIKit/UIKit.h>

@class BulletinBoardClient;

@interface ViewController : UIViewController <UITextFieldDelegate> {
 BulletinBoardClient *server;
}
@property (strong, nonatomic) IBOutlet UITextField *textField;
@property (strong, nonatomic) IBOutlet UITextView *textView;
- (IBAction)addPressed:(id)sender;
@end

Open the _iPhone.xibViewController
Place a Text Field, a Round Rect Button, and a Text View. |align=righttp://staff.aist.go.jp/hirano-s/thrift/xib.png
ht
Connect the delegate of the Text Field to File's Owner.
Connect the Text Field to variable in .h.textField ViewController
Connect the Button to method in .h. Give title to the button.addPressed: ViewController add
Connect the Text View to variable in .h. Clear the content of the Text View. textView ViewController

Copy the following code into .mViewController

#import <TSocketClient.h>
#import <TBinaryProtocol.h>
#import "ViewController.h"
#import "idl.h"

@implementation ViewController
@synthesize textField;
@synthesize textView;

- (void)viewDidLoad {
 [super viewDidLoad];

 // Talk to a server via socket, using a binary protocol
 TSocketClient *transport = [[TSocketClient alloc] initWithHostname:@"localhost" port:7911];
 TBinaryProtocol *protocol = [[TBinaryProtocol alloc] initWithTransport:transport strictRead:YES strictWrite:
YES];
 server = [[BulletinBoardClient alloc] initWithProtocol:protocol];
}

- (void)viewDidUnload {
 [self setTextField:nil];
 [self setTextView:nil];
 [super viewDidUnload];
}

- (IBAction)addPressed:(id)sender {
 Message *msg = [[Message alloc] init];
 msg.text = textField.text;
 msg.date = [[NSDate date] description];

 [server add:msg]; // send data

 NSArray *array = [server get]; // receive data
 NSMutableString *s = [NSMutableString stringWithCapacity:1000];
 for (Message *m in array)
 [s appendFormat:@"%@ %@\n", m.date, m.text];
 textView.text = s;

http://staff.aist.go.jp/hirano-s/thrift/add.tiff
http://staff.aist.go.jp/hirano-s/thrift/add.tiff
http://staff.aist.go.jp/hirano-s/thrift/group.tiff
http://staff.aist.go.jp/hirano-s/thrift/path2.tiff
http://staff.aist.go.jp/hirano-s/thrift/path.tiff
#
#
http://staff.aist.go.jp/hirano-s/thrift/xib.png
#
#
#
#

}

- (BOOL)textFieldShouldReturn:(UITextField*)aTextField {
 [aTextField resignFirstResponder];
 return YES;
}
@end

This code creates a new transport object that connects to localhost:7911, it then creates a protocol using the strict read and strict write settings.
These are important as the java server has strictRead off and strictWrite On by default. In the iOS app they are both off by default. If you omit
these parameters the two objects will not be able to communicate.

Creating the Java Server

cd into the gen-java directory
make sure that your classpath is properly setup. You will need to ensure that ".", libthrift.jar, slf4j-api, and slf4j-simple are in your classpath.
create the file .java BulletinBoardImpl

import org.apache.thrift.TException;
import java.util.List;
import java.util.ArrayList;

class BulletinBoardImpl implements BulletinBoard.Iface {
 private List<Message> msgs;

 public BulletinBoardImpl() {
 msgs = new ArrayList<Message>();
 }

 @Override
 public void add(Message msg) throws TException {
 System.out.println("date: " + msg.date);
 System.out.println("text: " + msg.text);
 msgs.add(msg);
 }

 @Override
 public List<Message> get() throws TException {
 return msgs;
 }
}

create a file called 'Server.java'

import java.io.IOException;
import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.protocol.TBinaryProtocol.Factory;
import org.apache.thrift.server.TServer;
import org.apache.thrift.server.TServer.Args;
import org.apache.thrift.server.TSimpleServer;
import org.apache.thrift.transport.TServerTransport;
import org.apache.thrift.transport.TServerSocket;
import org.apache.thrift.transport.TTransportException;

public class Server {

 private void start() {
 try {
 BulletinBoard.Processor processor = new BulletinBoard.Processor(new BulletinBoardImpl());
 TServerTransport serverTransport = new TServerSocket(7911);
 TServer server = new TSimpleServer(new Args(serverTransport).processor(processor));

 System.out.println("Starting server on port 7911 ...");
 server.serve();
 } catch (TTransportException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();

#

 }
 }

 public static void main(String args[]) {
 Server srv = new Server();
 srv.start();
 }
}

compile the classes

javac *.java

This will run a server that implements the service on port 7911. The service simply stores Message structures in a List and returns BulletinBoard
the list when requested.

Running

run the server

java Server

Build and run the myThriftApp . Since it tries to connect to localhost, you need to run it in the iPhone simulator rather in the iPhone simulator
than an iPhone.

Put a text in the text field and push add button.

|align=righthttp://staff.aist.go.jp/hirano-s/thrift/result.tiff

Objective-C specific Notes

Method signature

When a service with multiple arguments is compiled, argument names are omitted.

// IDL
service TestService {
 void method(1: i32 value1, 2: i32 value2),
}

void method:(int)value1 :(int)value2;
// [server method:24 :33];

Attributes

Struct members can be accessed via attributes of an instance.

// IDL
struct Person {
 1: string name,
 2: string city,
}

 Person *p = [[Person alloc] init];
 p.name = @"HIRANO";
 p.city = @"Tsukuba";

#
http://staff.aist.go.jp/hirano-s/thrift/result.tiff

Initialization

Since 0.9.0 (0.9.0-dev), initialization of struct and const is supported.

// IDL
struct Person {
 1: string name = "your name",
 2: string city = "your city",
}

const list<Person> MyFamily = [{name: "Satoshi", city: "Tsukuba"}, {name: "Akiko", city: "Tokyo"}]

String type

string is converted into UTF-8 encoding before sending. The UTF-8 encoding is converted to NSString* after receiving.

Binary type

Thrift for Objective-C supports type as NSData*.binary

// IDL
struct Person {
 1: string name,
 2: binary photo,

service TestService {
 void register(1: Person person),
}

 Person *p = [[Person alloc] init];
 p.name = @"HIRANO Satoshi";
 NSImage *image = [NSImage imageNamed:@"hirano.png"]; // load an image
 NSData *tiffData = [image TIFFRepresentation]; // obtain data
 p.photo = tiffData;
 [server register:p];

Collection types

The objective-C version supports collection types, list, set and map as NSArray, NSSet, and NSDictionary.

// IDL
struct TestData {
 list<string> listData,
 set<string> setData,
 map<string, string> mapData,
}

 TestData *t = [[TestData alloc] init];
 t.listData = [NSArray arrayWithObjects:@"a", @"b", nil];
 t.setData = [NSSet setWithObjects::@"e", @"f", nil];
 t.mapData = [NSDictionary dictionaryWithObjectsAndKeys:@"name", @"HIRANO", @"city", @"Tsukuba", nil];

Client Side Transports

You can mainly use the socket transport and the HTTP transport.

Note all language versions convert encoding automatically. For example Python does not do encoding conversion. (Thus, you need to do
conversion by yourself).

Here is a client side example for the socket transport.

#import <TSocketClient.h>
#import <TBinaryProtocol.h>

- (void) connect {
 // Talk to a server via socket, using a binary protocol
 TSocketClient *transport = [[TSocketClient alloc] initWithHostname:@"localhost" port:7911];
 TBinaryProtocol *protocol = [[TBinaryProtocol alloc] initWithTransport:transport strictRead:YES strictWrite:
YES];
 server = [[BulletinBoardClient alloc] initWithProtocol:protocol];

Here is a client side example for the HTTP transport. You may use https. You can connect to Google App Engine for example.

#import <THTTPClient.h>
#import <TBinaryProtocol.h>

- (void) connect {
 NSURL *url = [NSURL URLWithString:@"http://localhost:8082"];
 // url = [NSURL URLWithString:@"https://myapp145454.appspot.com"];

 // Talk to a server via HTTP, using a binary protocol
 THTTPClient *transport = [[THTTPClient alloc] initWithURL:url];
 TBinaryProtocol *protocol = [[TBinaryProtocol alloc]
 initWithTransport:transport
 strictRead:YES
 strictWrite:YES];

 server = [[TestServiceClient alloc] initWithProtocol:protocol];

Asynchronous Client

The asynchronous operation means that an RPC call returns immediately without waiting for the completion of a server operation. It is different from the
oneway operation. An asynchronous operation continues in background to wait for completion and it is possible to receive a return value. This feature
plays very important role in GUI based apps. You don't want to block for long time when a user pushes a button.

Unlike Java version, Objective-C version does not support asynchronous operation.

However, it is possible to write asynchronous operations using . The basic usage of is like this. Your async block is NSOperationQueue NSOperationQueue
executed in a background thread.

[asyncQueue addOperationWithBlock:^(void) {
 // your async block is here.
 int val = [remoteServer operation];
}];

There are some points to be considered.

Your async blocks are done in asyncQueue, an instance of .NSOperationQueue
Strong objects may not be accessed from a block. Since is also a strong object, we need to avoid to access within an async block. We self self
use weakSelf, a weak reference to .self
GUI operations must be in the main thread. For example, ; must be done in the main thread and you may not write it in the uilabel.text = @"foo"
above async block. A block that handles GUI is added to the which represents the main thread. We use in the nested mainQueue weaksSelf2
async block.
Exception handling is also needed.

Here are the fragments of class.ThriftTestViewController

// IDL
service TestService {
 i32 sum(1: i32 value1, 2: i32 value2),
}

@interface ThriftTestViewController : UIViewController {
 IBOutlet UILabel *msg;
}

#

@property (nonatomic, retain) UILabel *msg;
@property (nonatomic, strong) TestServiceClient *server;
@property (nonatomic, strong) NSOperationQueue *asyncQueue;
@property (nonatomic, strong) NSOperationQueue *mainQueue;

- (void)viewDidLoad {
 asyncQueue = [[NSOperationQueue alloc] init];
 [asyncQueue setMaxConcurrentOperationCount:1]; // serial
 mainQueue = [NSOperationQueue mainQueue]; // for GUI, DB

 NSURL *url = [NSURL URLWithString:@"http://localhost:8082"];

 // Talk to a server via HTTP, using a binary protocol
 THTTPClient *transport = [[THTTPClient alloc] initWithURL:url];
 TBinaryProtocol *protocol = [[TBinaryProtocol alloc]
 initWithTransport:transport
 strictRead:YES
 strictWrite:YES];
 // Use the service defined in profile.thrift
 server = [[TestServiceClient alloc] initWithProtocol:protocol];
 NSLog(@"Client init done %@", url);
}

-(void)doCalc {
 __unsafe_unretained ThriftTestViewController *weakSelf = self;
 [asyncQueue addOperationWithBlock:^(void) {
 __unsafe_unretained ThriftTestViewController *weakSelf2 = weakSelf;
 @try {
 weakSelf.msg.text = nil;
 int result = [weakSelf.server calc:24 :32];
 [weakSelf.mainQueue addOperationWithBlock:^(void) {
 weakSelf2.msg.text = [NSString stringWithFormat:@"%d", result];
 }];
 }
 @catch (TException *e) {
 NSString *errorMsg = e.description;
 NSLog(@"Error %@", errorMsg);
 [weakSelf.mainQueue addOperationWithBlock:^(void) {
 weakSelf2.msg.text = errorMsg;
 }];
 }
 }];
}

	ThriftUsageObjectiveC

