
ThriftUsagePython
Assuming you're using the definitions in "tutorial.thrift":

Generate the Code

Make sure the thrift compiler is installed somewhere in your PATH. Then generate new style classes (inherit from object, better introspection) for the
tutorial:

thrift -gen py:new_style tutorial.thrift
thrift -gen py:new_style shared.thrift

To generate old style classes:

thrift -gen py tutorial.thrift
thrift -gen py shared.thrift

This makes a subdirectory for the generated code.gen-py/

Import the Classes

First make sure you have added the gen-py/ subdirectory to your with:sys.path

import sys
sys.path.append('gen-py')

Then import the classes:

import tutorial.Calculator
from tutorial.ttypes import *
from thrift.protocol import TBinaryProtocol
from thrift.transport import TTransport

Create Objects, Using Constants

Make a Work thrift object, and set its 'op' field to the ENUM defined in and set two numeric fields to some values.Operation.ADD tutorial.thrift

work = Work()
work.num1 = 7
work.num2 = 9
work.op = Operation.ADD

Serialize to/from a string

Create a object to contain the serialized bytes, a object to perform the serialization, and use the thrift object's TMemoryBuffer TBinaryProtocol Work
 method to produce the serialized bytes.write

Then, take the serialized bytes and pass them into a new , pass that into another , create a new/empty thrift TMemoryBuffer TBinaryProtocol Work
object, and use it's method to deserialize the bytes, setting all the fields.read

transportOut = TTransport.TMemoryBuffer()
protocolOut = TBinaryProtocol.TBinaryProtocol(transportOut)
work.write(protocolOut)
bytes = transportOut.getvalue() # the string 'bytes' can be written out to disk
 # to be read in at a different time

transportIn = TTransport.TMemoryBuffer(bytes)
protocolIn = TBinaryProtocol.TBinaryProtocol(transportIn)
moreWork = Work()
moreWork.read(protocolIn)

	ThriftUsagePython

