Tutorial

up-to-date version of the Tutorial is available via Subversion repository: http://svn.apache.org/repos/asf/thrift/trunk/tutorial/

#!/usr/local/bin/thrift --gen cpp --gen java --gen py --php --gen rb --gen perl --erl --xsd -r

Thrift Tutorial
Mark Sl ee (ntslee@ acebook. com

#
#
#
#
This file ains to teach you how to use Thrift, ina .thrift file. Neato. The
first thing to notice is that .thrift files support standard shell comments.
This lets you make your thrift file executable and include your Thrift build
step on the top line. And you can place coments |ike this anywhere you like.
#
#
#

Before running this file, you will need to have installed the thrift conpiler
into /usr/local/bin.

| *x*

* The first thing to know about are types. The available types in Thrift are:

* bool Bool ean, one byte

* byte Si gned byte

* 116 Signed 16-bit integer

* 132 Si gned 32-bit integer

* 64 Si gned 64-bit integer

* doubl e 64-bit floating point value

* string String

* map<tl,t2> Map fromone type to another

* list<tl> Ordered list of one type

* set<tl> Set of unique elenents of one type

* Did you also notice that Thrift supports C style comments?
*/

/1 Just in case you were wondering... yes. W support sinple C comments too.

* Thrift files can reference other Thrift files to include common struct
* and service definitions. These are found using the current path, or by
* searching relative to any paths specified with the -1 conpiler flag.

* Included objects are accessed using the name of the .thrift file as a
* prefix. i.e. shared. SharedObj ect
*/

include "shared.thrift"

/**

* Thrift files can nanmespace, package, or prefix their output in various
* target |anguages.

*/

nanmespace cpp tutorial

namespace java tutorial

php_nanespace tutorial

nanmespace perl tutorial

nanespace snalltal k.category Thrift. Tutorial

/**

* Thrift lets you do typedefs to get pretty nanes for your types. Standard
* C style here.

*/

typedef i32 Myl nteger

/**

* Thrift also lets you define constants for use across |anguages. Conpl ex
* types and structs are specified using JSON notation.

*/

const 32 | NT32CONSTANT = 9853

const map<string, string> MAPCONSTANT = {' hello':"world', 'goodnight':'noon'}

| *x*

http://svn.apache.org/repos/asf/thrift/trunk/tutorial/

* You can define enuns, which are just 32 bit integers. Values are optional

* and start at 1 if not supplied, C style again.

* N Thriftl DL page says "If no constant value is supplied,

* the value is either 0 for the first elenent, or one greater than the

* precedi ng value for any subsequent elenment” so |I'mguessing that's a bug.

* PS: http://enel.ucal gary. ca/ Peopl e/ Nor man/ enel 315_wi nt er 1997/ enum types/ states that if values are not
supplied, they start at 0 and not 1.

*/

enum Operation {
ADD = 1,
SUBTRACT = 2,
MULTI PLY = 3,
DIVIDE = 4

}

/**

* Structs are the basic conplex data structures. They are conprised of fields
* which each have an integer identifier, a type, a synbolic nane, and an
* optional default val ue.

* Fields can be declared "optional", which ensures they will not be included
* in the serialized output if they aren't set. Note that this requires sone
* manual nmenagenent in sone | anguages.

*/
struct Work {

1: 132 nunml = 0O,

2: i32 nung,

3: Operation op,

4: optional string conment,

}

| x*

* Structs can al so be exceptions, if they are nasty.

*/

exception InvalidOperation {
1: 132 what,
2: string why

}

/**

* Ahh, now onto the cool part, defining a service. Services just need a nane
* and can optionally inherit from another service using the extends keyword.
*/

service Cal cul ator extends shared. SharedService {

/**

* A nethod definition looks like C code. It has a return type, argunents,

* and optionally a list of exceptions that it may throw. Note that argunent
* |lists and exception lists are specified using the exact sane syntax as

* field lists in struct or exception definitions. NOTE: Overl oading of

* nethods is not supported; each nmethod requires a unique nane.

*/

void ping(),
i32 add(1:i32 numl, 2:i32 nun®),

i32 calculate(1:i32 logid, 2:Wrk w) throws (1:1nvalidQperation ouch),

/**

* This nmethod has an oneway nodifier. That nmeans the client only nakes

* a request and does not |listen for any response at all. Oneway nethods

* must be void.

*

* The server may execute async invocations of the same client in parallel/
* out of order.

*/

oneway void zip(),

* It's possible to declare nore than one service per Thrift file.
*/
service Cal cul ator Extrene extends shared. SharedService {
voi d pingExtrenme(),
}

/**

* That just about covers the basics. Take a look in the test/ folder for nore
* detailed exanples. After you run this file, your generated code shows up

* in folders with names gen-<I| anguage>. The generated code isn't too scary

* to look at. It even has pretty indentation.

*/

	Tutorial

