
API04

Overview

The Cassandra Thrift API changed between 0.3 and 0.4; this document explains the 0.4 version. The 0.3 API is described in .API03

Cassandra's client API is built entirely on top of Thrift. It should be noted that these documents mention default values, but these are not generated in all of
the languages that Thrift supports.

WARNING: Some SQL/RDBMS terms are used in this documentation for analogy purposes. They should be thought of as just that; analogies. There are
few similarities between how data is managed in a traditional RDBMS and Cassandra. Please see for more information.DataModel

Terminology / Abbreviations

Keyspace

${renderedContent}

CF

${renderedContent}

SCF

${renderedContent}

Key

${renderedContent}

Exceptions

NotFoundException

${renderedContent}

InvalidRequestException

${renderedContent}

UnavailableException

${renderedContent}

TApplicationException

${renderedContent}

Structures

ConsistencyLevel

The is an that controls both read and write behavior based on in your . The ConsistencyLevel enum <ReplicationFactor> storage-conf.xml
different consistency levels have different meanings, depending on if you're doing a write or read operation. Note that if + > , W R ReplicationFactor
where W is the number of nodes to block for on write, and R the number to block for on reads, you will have strongly consistent behavior; that is, readers
will always see the most recent write. Of these, the most interesting is to do reads and writes, which gives you consistency while still allowing QUORUM
availability in the face of node failures up to half of . Of course if latency is more important than consistency then you can use lower ReplicationFactor
values for either or both.

Write

Level Behavior

ZERO Ensure nothing. A write happens asynchronously in background

ONE Ensure that the write has been written to at least 1 node's commit log and memory table before responding to the client.

QUORUM Ensure that the write has been written to nodes before responding to the client.<ReplicationFactor> / 2 + 1

ALL Ensure that the write is written to nodes before responding to the client.<ReplicationFactor>

Read

https://cwiki.apache.org/confluence/display/CASSANDRA2/API03
https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#

Le
vel

Behavior

ZE
RO

Not supported, because it doesn't make sense.

ONE Will return the record returned by the first node to respond. A consistency check is always done in a background thread to fix any consistency issues when Consist
 is used. This means subsequent calls will have correct data even if the initial read gets an older value. (This is called .)encyLevel.ONE read repair

QU
OR
UM

Will query all storage nodes and return the record with the most recent timestamp once it has at least a majority of replicas reported. Again, the remaining replicas
will be checked in the background.

ALL Not yet supported, but we plan to eventually.

ColumnPath and ColumnParent

The is the path to a single column in Cassandra. It might make sense to think of and in terms of a directory ColumnPath ColumnPath ColumnParent
structure.

Attribute Type Default Required Description

column_family string n/a Y The name of the CF of the column being looked up.

super_column binary n/a N The super column name.

column binary n/a N The column name.

ColumnPath is used to looking up a single column. is used when selecting groups of columns from the same ColumnFamily. In directory ColumnParent
structure terms, imagine as .ColumnParent ColumnPath + '/../'

SlicePredicate

A is similar to a , which is described as "a property that the elements of a set have in common."SlicePredicate mathematic predicate

SlicePredicate's in Cassandra are described with either a list of or a .column_names SliceRange

Attribute Type Def
ault

Req
uired

Description

column
_names

list n/a N A list of column names to retrieve. This can be used similar to Memcached's "multi-get" feature to fetch N known column names. For instance, if you know you
wish to fetch columns 'Joe', 'Jack', and 'Jim' you can pass those column names as a list to fetch all three at once.

slice_
range

Slice
Range

n/a N A describing how to range, order, and/or limit the slice.SliceRange

If is specified, is ignored.column_names slice_range

SliceRange

A slice range is a structure that stores basic range, ordering and limit information for a query that will return multiple columns. It could be thought of as
Cassandra's version of and .LIMIT ORDER BY

Attr
ibute

Ty
pe

D
ef
au
lt

Re
qui
red

Description

sta
rt

bi
na
ry

n
/a

Y The column name to start the slice with. This attribute is not required, though there is no default value, and can be safely set to , i.e., an empty byte array, to start with _
the first column name. Otherwise, it must a valid value under the rules of the Comparator defined for the given .ColumnFamily

fin
ish

bi
na
ry

n
/a

Y The column name to stop the slice at. This attribute is not required, though there is no default value, and can be safely set to an empty byte array to not stop until count
results are seen. Otherwise, it must also be a value value to the Comparator.ColumnFamily

rev
ers
ed

bo
ol

fa
lse

N Whether the results should be ordered in reversed order. Similar to in SQL.ORDER BY blah DESC

cou
nt

in
te
ger

100 N How many keys to return. Similar to in SQL. May be arbitrarily large, but Thrift will materialize the whole result into memory before returning it to the client, LIMIT 100
so be aware that you may be better served by iterating through slices by passing the last value of one call in as the of the next instead of increasing start count
arbitrarily large.

ColumnOrSuperColumn

Methods for fetching rows/records from Cassandra will return either a single instance of () or a list of ColumnOrSuperColumn get() ColumnOrSuperCol
's (). If you're looking up a (or list of 's) then the resulting instances of will have umn get_slice() SuperColumn SuperColumn ColumnOrSuperColumn

the requested in the attribute . For queries resulting in 's those values will be in the attribute . This change SuperColumn super_column Column column
was made between 0.3 and 0.4 to standardize on single query methods that may return either a or .SuperColumn Column

Attribute Type Default Required Description

column Column n/a N The returned by or .Column get() get_slice()

#
#
#
http://en.wikipedia.org/wiki/Predicate_(mathematical_logic)
#
#

super_column SuperColumn n/a N The returned by or .SuperColumn get() get_slice()

Method calls

get

ColumnOrSuperColumn get(keyspace, key, column_path, consistency_level)

Get the or at the given . If no value is present, is thrown. (This is the only method that can Column SuperColumn column_path NotFoundException
throw an exception under non-failure conditions.)

get_slice

list<ColumnOrSuperColumn> get_slice(keyspace, key, column_parent, predicate, consistency_level)

Get the group of columns contained by (either a name or a name pair) specified by the column_parent ColumnFamily ColumnFamily/SuperColumn
given struct.SlicePredicate

multiget

map<string,ColumnOrSuperColumn> multiget(keyspace, keys, column_path, consistency_level)
list<string>

Perform a for in parallel on the given . The return value maps keys to the found. If no get column_path list<string> keys ColumnOrSuperColumn
value corresponding to a key is present, the key will still be in the map, but both the and references of the column super_column ColumnOrSuperColu

 object it maps to will be null.mn

multiget_slice

map<string,list<ColumnOrSuperColumn>> multiget_slice(keyspace, keys, column_parent, predicate, consistency_level)

Performs a for and for the given keys in parallel.get_slice column_parent predicate

get_count

i32 get_count(keyspace, key, column_parent, consistency_level)

Counts the columns present in .column_parent

get_key_range

list<string> get_key_range(keyspace, column_family, start, finish, count=100, consistency_level)

Returns a list of keys starting with , ending with (both inclusive), and at most long. The empty string ("") can be used as a sentinel start finish count
value to get the first/last existing key. (The semantics are similar to the corresponding components of .) This method is only allowed when SliceRange
using an order-preserving partitioner._

Note'': 's design is kind of fundamentally broken, so we're deprecating it in favor of starting in 0.5. In trunk (0.5beta) get_key_range get_range_slice g
 should be used instead.et_range_slice

insert

insert(keyspace, key, column_path, value, timestamp, consistency_level)

Insert a consisting of (, ,) at the given and optional Column column_path.column value timestamp column_path.column_family column_path.
. Note that is here required, since a SuperColumn cannot directly contain binary values – it can only contain sub-super_column column_path.column

Columns.

batch_insert

batch_insert(keyspace, key, batch_mutation, consistency_level)

Insert Columns or across different Column Families for the same row key. is a SuperColumns batch_mutation map<string,
 – a map which pairs column family names with the relevant objects to insert.list<ColumnOrSuperColumn>> ColumnOrSuperColumn

remove

remove(keyspace, key, column_path, timestamp, consistency_level)

#
#

Remove data from the row specified by at the granularity specified by , and the given . Note that all the values in key column_path timestamp column_p
 besides are truly optional: you can remove the entire row by just specifying the ColumnFamily, or you can remove a ath column_path.column_family

SuperColumn or a single Column by specifying those levels too. Note that the is needed, so that if the commands are replayed in a different timestamp
order on different nodes, the same result is produced.

Examples

There are a few examples on this page over here.

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

http://wiki.apache.org/cassandra/ClientExamples
https://c.statcounter.com/9397521/0/fe557aad/1/

	API04

