API07

Overview

The Cassandra Thrift APl changed between 0.3, 0.4, 0.5, 0.6, and 0.7; this document explains the 0.7 version.

Cassandra's client APl is built entirely on top of Thrift. It should be noted that these documents mention default values, but these are not generated in all of
the languages that Thrift supports. Full examples of using Cassandra from Thrift, including setup boilerplate, are found on ThriftExamples. Higher-level

clients are linked from ClientOptions.

WARNING: Some SQL/RDBMS terms are used in this documentation for analogy purposes. They should be thought of as just that; analogies. There are
few similarities between how data is managed in a traditional RDBMS and Cassandra. Please see DataModel for more information.

Terminology / Abbreviations
Keyspace
${renderedContent}
CF
${renderedContent}
SCF
${renderedContent}
Key
${renderedContent}
Column

${renderedContent}

Exceptions
NotFoundException
${renderedContent}
InvalidRequestException
${renderedContent}
UnavailableException
${renderedContent}
TimedOutException
${renderedContent}
TApplicationException
${renderedContent}
AuthenticationException
${renderedContent}
AuthorizationException

${renderedContent}

Structures

ConsistencyLevel

https://cwiki.apache.org/confluence/display/CASSANDRA2/API03
https://cwiki.apache.org/confluence/display/CASSANDRA2/API04
https://cwiki.apache.org/confluence/display/CASSANDRA2/API05
https://cwiki.apache.org/confluence/display/CASSANDRA2/API06
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/ClientOptions
https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#

The Consi st encyLevel is an enumthat controls both read and write behavior based on <Repl i cat i onFact or > in your schema definition. The
different consistency levels have different meanings, depending on if you're doing a write or read operation. Note that if W+ R> Repl i cat i onFact or,
where W is the number of nodes to block for on write, and R the number to block for on reads, you will have strongly consistent behavior; that is, readers
will always see the most recent write. Of these, the most interesting is to do QUORUMreads and writes, which gives you consistency while still allowing
availability in the face of node failures up to half of Repl i cat i onFact or . Of course if latency is more important than consistency then you can use lower
values for either or both.

All discussion of "nodes" here refers to nodes responsible for holding data for the given key; "surrogate" nodes involved in HintedHandoff do not count
towards achieving the requested ConsistencyLevel.

Write
Level Behavior
ANY Ensure that the write has been written to at least 1 node, including HintedHandoff recipients.
ONE Ensure that the write has been written to at least 1 replica's commit log and memory table before responding to the client.
QUORUM Ensure that the write has been writtento N / 2 + 1 replicas before responding to the client.

LOCAL_QUORUM ' Ensure that the write has been written to <Repl i cat i onFact or >/ 2 + 1 nodes, within the local datacenter (requires Net wor kTopol ogy St r at egy)
EACH_QUORUM | Ensure that the write has been written to <Repl i cat i onFact or >/ 2 + 1 nodes in each datacenter (requires Net wor kTopol ogy St r at egy)

ALL Ensure that the write is written to all N replicas before responding to the client. Any unresponsive replicas will fail the operation.

Read

Level Behavior
ANY Not supported. You probably want ONE instead.

ONE Will return the record returned by the first replica to respond. A consistency check is always done in a background thread to fix any consistency issues when Con
si stencylLevel . ONEis used. This means subsequent calls will have correct data even if the initial read gets an older value. (This is called ReadRepair)

QUORUM Will query all replicas and return the record with the most recent timestamp once it has at least a majority of replicas (N / 2 + 1) reported. Again, the
remaining replicas will be checked in the background.

LOCAL ' Returns the record with the most recent timestamp once a majority of replicas within the local datacenter have replied.

_QUOR

UM

EACH_ | Returns the record with the most recent timestamp once a majority of replicas within each datacenter have replied.

QUORUM

ALL Will query all replicas and return the record with the most recent timestamp once all replicas have replied. Any unresponsive replicas will fail the operation.

Note: Different language toolkits may have their own Consistency Level defaults as well. To ensure the desired Consistency Level, you should always
explicitly set the Consistency Level.

ColumnOrSuperColumn

Due to the lack of inheritance in Thrift, Col urm and Super Col umm structures are aggregated by the Col unmOr Super Col unm structure. This is used
wherever either a Col unm or Super Col urm would normally be expected.

If the underlying column is a Col umm, it will be contained within the col umm attribute. If the underlying column is a Super Col um, it will be contained
within the super _col umm attribute. The two are mutually exclusive - i.e. only one may be populated.

Attribute Type Default | Required | Description

col um Col um n/a N The Col um if this Col unmOr Super Col umm is aggregating a Col umm.

super _col uim ' Super Col um | n/a N The Super Col umn if this Col unimOr Super Col umm is aggregating a Super Col unm
Column

The Col umm is a triplet of a name, value and timestamp. As described above, Col unm names are unique within a row. Timestamps are arbitrary - they can
be any integer you specify, however they must be consistent across your application. It is recommended to use a timestamp value with a fine granularity,
such as milliseconds since the UNIX epoch. See DataModel for more information.

Attribute Type Default Required Description

nane bi nary n/a Y The name of the Col umm.
val ue bi nary n/a Y The value of the Col umm.
tinmestanp i64 n/a Y The timestamp of the Col umm.

SuperColumn

https://cwiki.apache.org/confluence/display/CASSANDRA2/HintedHandoff
https://cwiki.apache.org/confluence/display/CASSANDRA2/HintedHandoff
https://cwiki.apache.org/confluence/display/CASSANDRA2/ReadRepair
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#

A Super Col unm contains no data itself, but instead stores another level of Col unms below the key. See DataModel for more details on what Super Col um
ns are and how they should be used.

Attribute Type Default Required Description
nane bi nary n/a Y The name of the Super Col um.
colums |ist<Col um> n/a Y The Col umms within the Super Col um.

ColumnPath

The Col umPat h is the path to a single column in Cassandra. It might make sense to think of Col utmPat h and Col urmPar ent in terms of a directory
structure.

Attribute Type Default | Required | Description

colum_famly string n/a Y The name of the CF of the column being looked
up.

super _colum binary n/a N The super column name.

col um bi nary n/a N The column name.

ColumnParent

The Col umPar ent is the path to the parent of a particular set of Col umrms. It is used when selecting groups of columns from the same ColumnFamily. In
directory structure terms, imagine Col umPar ent as Col umPath + '/../".

Attribute Type Default Required Description

colum_famly string n/a Y The name of the CF of the column being looked
up.

super_colum binary nla N The super column name.

SlicePredicate
A Sl i cePredi cat e is similar to a mathematic predicate, which is described as "a property that the elements of a set have in common."
Sli cePredi cat e's in Cassandra are described with either a list of col uim_nanes or a Sl i ceRange.

Attribute Type De ' Req Description

fau | uired
It
colum list<b n N A list of column names to retrieve. This can be used similar to Memcached's "multi-get" feature to fetch N known column names. For instance, if you know
_names inary> J/a you wish to fetch columns 'Joe’, ‘Jack’, and 'Jim' you can pass those column names as a list to fetch all three at once.
slice_ SliceR n N A Sl i ceRange describing how to range, order, and/or limit the slice.
range ange la

If col utm_nanes is specified, sl i ce_r ange is ignored.

SliceRange

A Sl i ceRange is a structure that stores basic range, ordering and limit information for a query that will return multiple columns. It could be thought of as
Cassandra's version of LI M T and ORDER BY.

Attr Ty D Re Description
ibute pe ef qui

au red

It

sta bi n Y The column name to start the slice with. This attribute is not required, though there is no default value, and can be safely setto _, i.e., an empty byte array, to start with

rt na /a the first column name. Otherwise, it must be a valid value under the rules of the Comparator defined for the given Col urmFamni | y.

ry
fin bi n Y The column name to stop the slice at. This attribute is not required, though there is no default value, and can be safely set to an empty byte array to not stop until count
ish na J/a results are seen. Otherwise, it must also be a valid value to the Col untmFani | y Comparator.

ry
rev bo f Y Whether the results should be ordered in reversed order. Similar to ORDER BY bl ah DESCin SQL.
ers ol a

|

ed

cou in 1 Y How many columns to return. Similar to LI M T 100 in SQL. May be arbitrarily large, but Thrift will materialize the whole result into memory before returning it to the

nt te 00 client, so be aware that you may be better served by iterating through slices by passing the last value of one call in as the st ar t of the next instead of increasing count
ger arbitrarily large.
KeyRange

A KeyRange is used by get _range_sl i ces to define the range of keys to get the slices for.

https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#
#
#
http://en.wikipedia.org/wiki/Predicate_(mathematical_logic)
#
#

The semantics of start keys and tokens are slightly different. Keys are start-inclusive; tokens are start-exclusive. Token ranges may also wrap — that is, the
end token may be less than the start one. Thus, a range from keyX to keyX is a one-element range, but a range from tokenY to tokenY is the full ring.

Attribute Type Default | Required | Description

start_key bi nary n/a N The first key in the inclusive KeyRange.

end_key bi nary n/a N The last key in the inclusive KeyRange.
start_token string n/a N The first token in the exclusive KeyRange.

end_t oken string n/a N The last token in the exclusive KeyRange.

count i32 100 Y The total number of keys to permit in the KeyRange.
KeySlice

A KeySl i ce encapsulates a mapping of a key to the slice of columns for it as returned by the get_range_slices operation. Normally, when slicing a single
key, ali st <Col umOr Super Col urm> of the slice would be returned. When slicing multiple or a range of keys, al i st <KeySl i ce> is instead returned

so that each slice can be mapped to their key.

Attribute Type Default Required = Description

key bi nary n/a Y The key for the slice.

col umms | |i st <Col umOr Super Col um> | n/a Y The columns in the
slice.

IndexOperator

An enum that details the type of operator to use in an | ndexExpr essi on. Currently, on EQis supported for configuring a Col utmFami | y, but the other
operators may be used in conjunction with and EQ operator on other non-indexed columns.

Operator ' Description

EQ Equality

GTE Greater than or equal
to

Gr Greater than

LTE Less than or equal to

LT Less than

IndexExpression

A struct that defines the | ndexQper at or to use against a column for a lookup value. Used only by the | ndexCl ause in the get _i ndexed_sl i ces
method.

Attribute Type Defau = Requir | Description
It ed
colum_na | binary n/a Y The column name to against which the operator and value will be applied
e
op I ndexOperat n/a Y The I ndexQper at or to use. Currently only EQis supported for direct queries, but other | ndexExpr essi on structs may be created and
or passed to | ndexCl ause
val ue bi nary n/a Y The value to be compared against the column value
IndexClause

Defines one or more | ndexExpression}}s for {{get_indexed_slices. AnlndexExpressi on containing an EQI ndexQOper at or must be
present.

Attribute Type Default Required Description

expressions |ist<lndexExpression> n/a Y The list of | ndexExpr essi on objects which must contain one EQI ndexQOper at or among the
expressions

start_key bi nary n/a Y Start the index query at the specified key - can be set to _, i.e., an empty byte array, to start with the first
key

count i nteger 100 Y The number of results to which the index query will be constrained

TokenRange

A structure representing structural information about the cluster provided by the descr i be utility methods detailed below.

Attribute Type Default Required Description

#
#
#
#
#

start_token string n/a Y The first token in the TokenRange.

end_t oken string n/a Y The last token in the TokenRange.

endpoi nt s list<string> nla Y A list of the endpoints (nodes) that replicate data in the TokenRange.
Mutation

A Mut at i on encapsulates either a column to insert, or a deletion to execute for a key. Like Col umOr Super Col umm, the two properties are mutually
exclusive - you may only set one on a Mutation.

Attribute Type Default Required Description

col urm_or _super col urm = Col utmOr Super Col um | n/a N The column to insert in to the key.

del etion Del etion n/a N The deletion to execute on the
key.

Deletion

A Del et i on encapsulates an operation that will delete all columns less than the specified t i mest anp and matching the pr edi cat e. If super _col um
is specified, the Del et i on will operate on columns within the Super Col umm - otherwise it will operate on columns in the top-level of the key.

Attribute Type Default Required @ Description

ti mestanp i64 n/a Y The timestamp of the delete operation.

super _col umm | bi nary n/a N The super column to delete the column(s) from.

predicate SlicePredicate n/a N A ;I)redicate to match the column(s) to be deleted from the key/super
column.

AuthenticationRequest

A structure that encapsulates a request for the connection to be authenticated. The authentication credentials are arbitrary - this structure simply provides
a mapping of credential name to credential value.

Attribute Type Default | Required | Description

credentials map<string, string> n/a Y A map of named
credentials.

Method calls

login

® void | ogi n(keyspace, auth_request)
Authenticates with the cluster for operations on the specified keyspace using the specified Aut hent i cat i onRequest credentials. Throws Aut hent i cat
i onExcept i on if the credentials are invalid or Aut hor i zat i onExcept i on if the credentials are valid, but not for the specified keyspace.
get

® Col umOr Super Col um get (key, col umm_path, consistency_| evel)
Get the Col umm or Super Col umm at the given col unm_pat h. If no value is present, Not FoundExcept i on is thrown. (This is the only method that can
throw an exception under non-failure conditions.)
get_slice

® | ist<Col umOr Super Col uim> get _sl i ce(key, columm_parent, predicate, consistency_|evel)
Get the group of columns contained by col urm_par ent (either a Col utmFamni | y name or a Col utmFami | y/ Super Col unm name pair) specified by the
given Sl i cePr edi cat e struct.
multiget_slice

® map<string,|ist<Col umOr Super Col um>> mul ti get _slice(keys, colum_parent, predicate, consistency_|evel)
Retrieves slices for col utm_par ent and pr edi cat e on each of the given keys in parallel. Keys are a ‘list<string> of the keys to get slices for.

This is similar to get _r ange_sl i ces, except it operates on a set of non-contiguous keys instead of a range of keys.

get_count

#

® |32 get_count (key, colum_parent, predicate, consistency_|evel)
Counts the columns present in col unm_par ent within the pr edi cat e.

The method is not O(1). It takes all the columns from disk to calculate the answer. The only benefit of the method is that you do not need to pull all the
columns over Thrift interface to count them.

multiget_count
® map<string, i32> nultiget_count(keys, columm_parent, predicate, consistency_|level)

A combination of nul ti get _slice }}and{{ get_count.

get_range_slices
® |ist<KeySlice> get_range_slices(colum_parent, predicate, range, consistency_|level)
Replaces get _r ange_sl i ce. Returns a list of slices for the keys within the specified KeyRange. Unlike get_key_range, this applies the given predicate

to all keys in the range, not just those with undeleted matching data. Note that when using RandomPartitioner, keys are stored in the order of their MD5
hash, making it impossible to get a meaningful range of keys between two endpoints.

get_indexed_slices

® |ist<KeySlice> get_indexed_slices(colum_parent, index_clause, predicate, consistency_|evel)
Like get _range_sl i ces, returns a list of slices, but uses | ndexCl ause instead of KeyRange. To use this method, the underlying Col umFanmi | y of
the Col ummPar ent must have been configured with a column_metadata attribute, specifying at least the name and index_type attributes. See Cf Def and

Col umDef above for the list of attributes. Note: the | ndexd ause must contain one | ndexExpr essi on with an EQoperator on a configured index
column. Other | ndexExpr essi on structs may be added to the | ndexCl ause for non-indexed columns to further refine the results of the EQexpression.

insert
® insert(key, colum_path, colum, consistency_|evel)

Insert a Col unm consisting of (nare, val ue, ti mest anp) at the given col umm_pat h. col umm_f ami | y and optional col urm_pat h. super _col umm.
Note that a SuperColumn cannot directly contain binary values — it can only contain sub-Columns. Only one sub-Column may be inserted at a time, as well.

batch_mutate

® batch_nutate(rutation_map, consistency_level)
Executes the specified mutations on the keyspace. nmut at i on_nap is a map<string, map<string, vector<Mitati on>>>;the outer map maps the
key to the inner map, which maps the column family to the Mut at i on; can be read as: map<key : string, map<columm_famly : string,

vect or <Mut at i on>>>. To be more specific, the outer map key is a row key, the inner map key is the column family name.

A Mut at i on specifies either columns to insert or columns to delete. See Mut at i on and Del et i on above for more details.

remove

® renove(key, columm_path, tinestanp, consistency_|evel)
Remove data from the row specified by key at the granularity specified by col umm_pat h, and the given t i nest anp. Note that all the values in col um_p
at h besides col urm_pat h. col urm_f ani | y are truly optional: you can remove the entire row by just specifying the ColumnFamily, or you can remove a

SuperColumn or a single Column by specifying those levels too. Note that the t i mest anp is needed, so that if the commands are replayed in a different
order on different nodes, the same result is produced.

truncate
® truncate(string colum_famly)

Removes all the rows from the given column family.

describe_cluster_name
® string describe_cluster_nane()

Gets the name of the cluster.

describe_keyspace

® KsDef describe_keyspace(string keyspace)

https://cwiki.apache.org/confluence/display/CASSANDRA2/RandomPartitioner

Gets information about the specified keyspace.

describe_keyspaces
® |ist<KsDef> describe_keyspaces()

Gets a list of all the keyspaces configured for the cluster. (Equivalent to calling describe_keyspace(k) for k in keyspaces.)

describe_partitioner
® string describe_partitioner()

Gets the name of the partitioner for the cluster.

describe_ring
® | ist<TokenRange> describe_ring(keyspace)
Gets the token ring; a map of ranges to host addresses. Represented as a set of TokenRange instead of a map from range to list of endpoints, because

you can't use Thrift structs as map keys: https://issues.apache.org/jira/browse/THRIFT-162 for the same reason, we can't return a set here, even though
order is neither important nor predictable.

describe_snitch
® string describe_snitch()

Gets the name of the snitch used for the cluster.

describe_version
® string describe_version()

Gets the Thrift API version.

system_add_column_family
® string system add_col um_fam | y(CFDef cf_def)

Adds a column family. This method will throw an exception if a column family with the same name is already associated with the keyspace. Returns the
new schema version ID.

system_drop_column_family
® string systemdrop_colum_fami|y(Col umFanmily colum_fanily)

Drops a column family. Creates a snapshot and then submits a 'graveyard' compaction during which the abandoned files will be deleted. Returns the new
schema version ID.

system_add_keyspace
® string system add_keyspace(KSDef ks_def)

Creates a new keyspace and any column families defined with it. Callers are not required to first create an empty keyspace and then create column
families for it. Returns the new schema version ID.

system_drop_keyspace
® string system.drop_keyspace(string keyspace)
Drops a keyspace. Creates a snapshot and then submits a 'graveyard' compaction during which the abandoned files will be deleted. Returns the new
schema version ID.
Examples
There are a few examples on this page over here.

https://c.statcounter.com 9397521/ 0/ f e557aad/ 1/ | stats

https://issues.apache.org/jira/browse/THRIFT-162
http://wiki.apache.org/cassandra/ClientExamples
https://c.statcounter.com/9397521/0/fe557aad/1/

	API07

