
API10

Overview

The Cassandra Thrift API changed between , , , , and ; this document explains the 1.0 version.0.3 0.4 0.5 0.6 0.7

Cassandra's client API is built entirely on top of Thrift. It should be noted that these documents mention default values, but these are not generated in all of
the languages that Thrift supports. Full examples of using Cassandra from Thrift, including setup boilerplate, are found on . Higher-level ThriftExamples
clients are linked from .ClientOptions

WARNING: Some SQL/RDBMS terms are used in this documentation for analogy purposes. They should be thought of as just that; analogies. There are
few similarities between how data is managed in a traditional RDBMS and Cassandra. Please see for more information.DataModel

Terminology / Abbreviations

Keyspace

${renderedContent}

CF

${renderedContent}

SCF

${renderedContent}

Key

${renderedContent}

Column

${renderedContent}

Exceptions

NotFoundException

${renderedContent}

InvalidRequestException

${renderedContent}

UnavailableException

${renderedContent}

TimedOutException

${renderedContent}

TApplicationException

${renderedContent}

AuthenticationException

${renderedContent}

AuthorizationException

${renderedContent}

SchemaDisagreementException

${renderedContent}

Structures

ConsistencyLevel

https://cwiki.apache.org/confluence/display/CASSANDRA2/API03
https://cwiki.apache.org/confluence/display/CASSANDRA2/API04
https://cwiki.apache.org/confluence/display/CASSANDRA2/API05
https://cwiki.apache.org/confluence/display/CASSANDRA2/API06
https://cwiki.apache.org/confluence/display/CASSANDRA2/API07
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/ClientOptions
https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#

The is an that controls both read and write behavior based on in your schema definition. The ConsistencyLevel enum <ReplicationFactor>
different consistency levels have different meanings, depending on if you're doing a write or read operation. Note that if + > , W R ReplicationFactor
where W is the number of nodes to block for on write, and R the number to block for on reads, you will have strongly consistent behavior; that is, readers
will always see the most recent write. Of these, the most interesting is to do reads and writes, which gives you consistency while still allowing QUORUM
availability in the face of node failures up to half of . Of course if latency is more important than consistency then you can use lower ReplicationFactor
values for either or both.

All discussion of "nodes" here refers to nodes responsible for holding data for the given key; "surrogate" nodes involved in do not count HintedHandoff
towards achieving the requested ConsistencyLevel.

Write

Level Behavior

ANY Ensure that the write has been written to at least 1 node, including recipients.HintedHandoff

ONE Ensure that the write has been written to at least 1 replica's commit log and memory table before responding to the client.

TWO Ensure that the write has been written to at least 2 replica's before responding to the client.

THREE Ensure that the write has been written to at least 3 replica's before responding to the client.

QUORUM Ensure that the write has been written to replicas before responding to the client.N / 2 + 1

LOCAL_QUORUM Ensure that the write has been written to / 2 + 1 nodes, within the local datacenter (requires) <ReplicationFactor> NetworkTopologyStrategy

EACH_QUORUM Ensure that the write has been written to / 2 + 1 nodes in each datacenter (requires)<ReplicationFactor> NetworkTopologyStrategy

ALL Ensure that the write is written to all replicas before responding to the client. Any unresponsive replicas will fail the operation.N

Read

Level Behavior

ANY Not supported. You probably want ONE instead.

ONE Will return the record returned by the first replica to respond. A consistency check is always done in a background thread to fix any consistency issues when Con
 is used. This means subsequent calls will have correct data even if the initial read gets an older value. (This is called)sistencyLevel.ONE ReadRepair

TWO Will query 2 replicas and return the record with the most recent timestamp. Again, the remaining replicas will be checked in the background.

THREE Will query 3 replicas and return the record with the most recent timestamp.

QUORUM Will query all replicas and return the record with the most recent timestamp once it has at least a majority of replicas () reported. Again, the N / 2 + 1
remaining replicas will be checked in the background.

LOCAL
_QUOR
UM

Returns the record with the most recent timestamp once a majority of replicas within the local datacenter have replied.

EACH_
QUORUM

Returns the record with the most recent timestamp once a majority of replicas within each datacenter have replied.

ALL Will query all replicas and return the record with the most recent timestamp once all replicas have replied. Any unresponsive replicas will fail the operation.

Note: Different language toolkits may have their own Consistency Level defaults as well. To ensure the desired Consistency Level, you should always
explicitly set the Consistency Level.

ColumnOrSuperColumn

Due to the lack of inheritance in Thrift, and structures are aggregated by the structure. This is used Column SuperColumn ColumnOrSuperColumn
wherever either a or would normally be expected.Column SuperColumn

If the underlying column is a , it will be contained within the attribute. If the underlying column is a , it will be contained Column column SuperColumn
within the attribute. The two are mutually exclusive - i.e. only one may be populated.super_column

Attribute Type Default Required Description

column Column n/a N The if this is aggregating a .Column ColumnOrSuperColumn Column

super_column SuperColumn n/a N The if this is aggregating a SuperColumn ColumnOrSuperColumn SuperColumn

counter_column CounterColumn n/a N The if this is aggregating a .CounterColumn ColumnOrSuperColumn CounterColumn

counter_super_column CounterSuperColumn n/a N The if this is aggregating a CounterSuperColumn ColumnOrSuperColumn CounterSuperColumn

Column

The is a triplet of a name, value and timestamp. As described above, names are unique within a row. Timestamps are arbitrary - they can Column Column
be any integer you specify, however they must be consistent across your application. It is recommended to use a timestamp value with a fine granularity,
such as milliseconds since the UNIX epoch (the CLI uses microseconds). See for more information.DataModel

https://cwiki.apache.org/confluence/display/CASSANDRA2/HintedHandoff
https://cwiki.apache.org/confluence/display/CASSANDRA2/HintedHandoff
https://cwiki.apache.org/confluence/display/CASSANDRA2/ReadRepair
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel

Attribute Type Default Required Description

name binary n/a Y The name of the .Column

value binary n/a Y The value of the .Column

timestamp i64 n/a Y The timestamp of the .Column

ttl i32 n/a N An optional, positive delay (in seconds) after which the will be automatically Column
deleted.

SuperColumn

A contains no data itself, but instead stores another level of below the key. See for more details on what SuperColumn Columns DataModel SuperColum
 are and how they should be used.ns

Attribute Type Default Required Description

name binary n/a Y The name of the .SuperColumn

columns list<Column> n/a Y The within the . Columns SuperColumn

CounterColumn

A only allows for addition and subtraction. See for more information.CounterColumn Counters

Attribute Type Default Required Description

name binary n/a Y The name of the . Column

value binary n/a Y The value of the . Column

CounterSuperColumn

A contains no data itself, but instead stores another level of below the key.CounterSuperColumn CounterColumn

Attribute Type Default Required Description

name binary n/a Y The name of the .SuperColumn

columns list<CounterColumn> n/a Y The within the . CounterColumns CounterSuperColumn

ColumnPath

The is the path to a single column in Cassandra. It might make sense to think of and in terms of a directory ColumnPath ColumnPath ColumnParent
structure.

Attribute Type Default Required Description

column_family string n/a Y The name of the CF of the column being looked
up.

super_column binary n/a N The super column name.

column binary n/a N The column name.

ColumnParent

The is the path to the parent of a particular set of . It is used when selecting groups of columns from the same ColumnFamily. In ColumnParent Columns
directory structure terms, imagine as .ColumnParent ColumnPath + '/../'

Attribute Type Default Required Description

column_family string n/a Y The name of the CF of the column being looked
up.

super_column binary n/a N The super column name.

SlicePredicate

A is similar to a , which is described as "a property that the elements of a set have in common."SlicePredicate mathematic predicate

SlicePredicate's in Cassandra are described with either a list of or a .column_names SliceRange

Attribute Type De
fau
lt

Req
uired

Description

column
_names

list<b
inary>

n
/a

N A list of column names to retrieve. This can be used similar to Memcached's "multi-get" feature to fetch N known column names. For instance, if you know
you wish to fetch columns 'Joe', 'Jack', and 'Jim' you can pass those column names as a list to fetch all three at once.

slice_
range

SliceR
ange

n
/a

N A describing how to range, order, and/or limit the slice.SliceRange

#
https://cwiki.apache.org/confluence/display/CASSANDRA2/DataModel
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/Counters
#
#
#
#
http://en.wikipedia.org/wiki/Predicate_(mathematical_logic)

If is specified, is ignored.column_names slice_range

SliceRange

A is a structure that stores basic range, ordering and limit information for a query that will return multiple columns. It could be thought of as SliceRange
Cassandra's version of and .LIMIT ORDER BY

Attr
ibute

Ty
pe

D
ef
au
lt

Re
qui
red

Description

sta
rt

bi
na
ry

n
/a

Y The column name to start the slice with. This attribute is not required, though there is no default value, and can be safely set to , i.e., an empty byte array, to start with _
the first column name. Otherwise, it must be a valid value under the rules of the Comparator defined for the given .ColumnFamily

fin
ish

bi
na
ry

n
/a

Y The column name to stop the slice at. This attribute is not required, though there is no default value, and can be safely set to an empty byte array to not stop until count
results are seen. Otherwise, it must also be a valid value to the Comparator.ColumnFamily

rev
ers
ed

bo
ol

f
a
l
se

Y Whether the results should be ordered in reversed order. Similar to in SQL. When reversed is , will determine the right end of the ORDER BY blah DESC true start
range while will determine the left, meaning must be >= .finish start finish

cou
nt

in
te
ger

1
00

Y How many columns to return. Similar to in SQL. May be arbitrarily large, but Thrift will materialize the whole result into memory before returning it to the LIMIT 100
client, so be aware that you may be better served by iterating through slices by passing the last value of one call in as the of the next instead of increasing start count
arbitrarily large.

KeyRange

A is used by to define the range of keys to get the slices for.KeyRange get_range_slices

The semantics of start keys and tokens are slightly different. Keys are start-inclusive; tokens are start-exclusive. Token ranges may also wrap – that is, the
end token may be less than the start one. Thus, a range from keyX to keyX is a one-element range, but a range from tokenY to tokenY is the full ring (one
exception is if keyX is mapped to the minimum token, then the range from keyX to keyX is the full ring).

Attribute Type Default Required Description

start_key binary n/a N The first key in the inclusive .KeyRange

end_key binary n/a N The last key in the inclusive .KeyRange

start_token string n/a N The first token in the exclusive .KeyRange

end_token string n/a N The last token in the exclusive .KeyRange

count i32 100 Y The total number of keys to permit in the .KeyRange

row_filter list<IndexExpression> n/a N The list of objects which must contain one EQ among the IndexExpression IndexOperator
expressions

KeySlice

A encapsulates a mapping of a key to the slice of columns for it as returned by the get_range_slices operation. Normally, when slicing a single KeySlice
key, a of the slice would be returned. When slicing multiple or a range of keys, a is instead returned list<ColumnOrSuperColumn> list<KeySlice>
so that each slice can be mapped to their key.

Attribute Type Default Required Description

key binary n/a Y The key for the slice.

columns list<ColumnOrSuperColumn> n/a Y The columns in the
slice.

IndexOperator

An enum that details the type of operator to use in an . Currently, on is supported for configuring a , but the other IndexExpression EQ ColumnFamily
operators may be used in conjunction with and operator on other non-indexed columns.EQ

Operator Description

EQ Equality

GTE Greater than or equal
to

GT Greater than

LTE Less than or equal to

LT Less than

IndexExpression

#
#
#
#
#
#
#

A struct that defines the to use against a column for a lookup value. Used by the in the method IndexOperator IndexClause get_indexed_slices
and by .KeyRange

Attribute Type Defau
lt

Requir
ed

Description

column_na
me

binary n/a Y The column name to against which the operator and value will be applied

op IndexOperat
or

n/a Y The to use. Currently only is supported for direct queries, but other structs may be created and IndexOperator EQ IndexExpression
passed to IndexClause

value binary n/a Y The value to be compared against the column value

IndexClause

Defines one or more . An containing an must be IndexExpression}}s for {{get_indexed_slices IndexExpression EQ IndexOperator
present.

Attribute Type Default Required Description

expressions list<IndexExpression> n/a Y The list of objects which must contain one among the IndexExpression EQ IndexOperator
expressions

start_key binary n/a Y Start the index query at the specified key - can be set to , i.e., an empty byte array, to start with the first _
key

count integer 100 Y The number of results to which the index query will be constrained

TokenRange

A structure representing structural information about the cluster provided by the utility methods detailed below.describe

Attribute Type Default Required Description

start_token string n/a Y The first token in the .TokenRange

end_token string n/a Y The last token in the .TokenRange

endpoints list<string> n/a Y A list of the endpoints (nodes) that replicate data in the . TokenRange

Mutation

A encapsulates either a column to insert, or a deletion to execute for a key. Like , the two properties are mutually Mutation ColumnOrSuperColumn
exclusive - you may only set one on a Mutation.

Attribute Type Default Required Description

column_or_supercolumn ColumnOrSuperColumn n/a N The column to insert in to the key.

deletion Deletion n/a N The deletion to execute on the
key.

Deletion

A encapsulates an operation that will delete all columns less than the specified and matching the . If Deletion timestamp predicate super_column
is specified, the will operate on columns within the - otherwise it will operate on columns in the top-level of the key.Deletion SuperColumn

Attribute Type Default Required Description

timestamp i64 n/a N The timestamp of the delete operation. Must only be unset in the case of counter
deletions.

super_column binary n/a N The super column to delete the column(s) from.

predicate SlicePredicate n/a N A predicate to match the column(s) to be deleted from the key/super column.

AuthenticationRequest

A structure that encapsulates a request for the connection to be authenticated. The authentication credentials are arbitrary - this structure simply provides
a mapping of credential name to credential value.

Attribute Type Default Required Description

credentials map<string, string> n/a Y A map of named
credentials.

IndexType

Type Behavior

#
#
#
#

KEY
S

A backed ColumnFamily
index.

ColumnDef

Describes a column in a column family.

Attribute Type Default Required Description

name binary n/a Y The column name

validation_class string n/a Y The validation_class of the column as a class name

index_type IndexType n/a N The type of index

index_name string n/a N Name for the index. Both an index name and type must be
specified.

CfDef

Describes a column family

Attribute Type Default Required

keyspace string n/a Y

name string n/a Y

column_type string Standard N

comparator_type string BytesType N

subcomparator_type string n/a N

comment string n/a N

row_cache_size double 0 N

key_cache_size double 200000 N

read_repair_chance double 1.0 N

column_metadata list<ColumnDef> n/a N

gc_grace_seconds i32 n/a N

default_validation_class string n/a N

id i32 n/a N

min_compaction_threshold i32 n/a N

max_compaction_threshold i32 n/a N

row_cache_save_period_in_seconds i32 n/a N

key_cache_save_period_in_seconds i32 n/a N

memtable_flush_after_mins i32 n/a N

memtable_throughput_in_mb i32 n/a N

memtable_operations_in_millions double n/a N

replicate_on_write bool n/a N

merge_shards_chance double n/a N

key_validation_class string n/a N

row_cache_provider string org.apache.cassandra.cache.ConcurrentLinkedHashCacheProvider N

key_alias binary n/a N

KsDef

Describes a keyspace.

Attribute Type Default Required

name string n/a Y

strategy_class string n/a Y

strategy_options map<string,string> n/a N

cf_defs list<CfDef> n/a Y

durable_writes bool true N

Compression

#
#
#

Type

GZIP

NONE

CqlResultType

Type

ROWS

VOID

INT

CqlRow

Row returned from a CQL query.

Attribute Type Default Required

key binary n/a Y

columns list<Column> n/a Y

CqlRow

Result returned from a CQL query.

Attribute Type Default Required

type CqlResultType n/a Y

rows list<CqlRow> n/a N

num i32 n/a N

Method calls

login

void login(AuthenticationRequest auth_request)

Authenticates with the cluster using the specified credentials. Throws if the credentials are AuthenticationRequest AuthenticationException
invalid or if the credentials are valid, but not for the specified keyspace.AuthorizationException

set_keyspace

void set_keyspace(string keyspace)

Set the keyspace to use for subsequent requests. Throws for an unknown keyspace.InvalidRequestException

get

ColumnOrSuperColumn get(binary key, column_path, consistency_level)ColumnPath ConsistencyLevel

Get the or at the given . If no value is present, is thrown. (This is the only method that can Column SuperColumn column_path NotFoundException
throw an exception under non-failure conditions.)

get_slice

list<ColumnOrSuperColumn> get_slice(binary key, column_parent, predicate, ColumnParent SlicePredicate Consis
 consistency_level)tencyLevel

Get the group of columns contained by (either a name or a name pair) specified by the column_parent ColumnFamily ColumnFamily/SuperColumn
given struct.SlicePredicate

multiget_slice

map<string,list<ColumnOrSuperColumn>> multiget_slice(list<binary> keys, column_parent, ColumnParent SlicePre
 predicate, consistency_level)dicate ConsistencyLevel

#
#
#
#
#
#
#
#
#
#
#
#
#
#

Retrieves slices for and on each of the given keys in parallel. Keys are a `list<string> of the keys to get slices for.column_parent predicate

This is similar to , except it operates on a set of non-contiguous keys instead of a range of keys.get_range_slices

get_count

i32 get_count(binary key, column_parent, predicate, ColumnParent SlicePredicate ConsistencyLevel
consistency_level)

Counts the columns present in within the column_parent predicate.

The method is not O(1). It takes all the columns from disk to calculate the answer. The only benefit of the method is that you do not need to pull all the
columns over Thrift interface to count them.

multiget_count

map<string, i32> multiget_count(list<binary> keys, column_parent, predicate, ColumnParent SlicePredicate Con
 consistency_level)sistencyLevel

A combination of multiget_slice }}and{{ get_count.

get_range_slices

list<KeySlice> get_range_slices(ColumnParent column_parent, predicate, range, SlicePredicate KeyRange Consis
 consistency_level)tencyLevel

Replaces . Returns a list of slices for the keys within the specified . Unlike get_key_range, this applies the given predicate get_range_slice KeyRange
to all keys in the range, not just those with undeleted matching data. Note that when using , keys are stored in the order of their MD5 RandomPartitioner
hash, making it impossible to get a meaningful range of keys between two endpoints.

get_indexed_slices

list<KeySlice> get_indexed_slices(ColumnParent column_parent, index_clause, IndexClause SlicePredicate
predicate, consistency_level)ConsistencyLevel

Like , returns a list of slices, but uses instead of . To use this method, the underlying of get_range_slices IndexClause KeyRange ColumnFamily
the must have been configured with a column_metadata attribute, specifying at least the name and index_type attributes. See and ColumnParent CfDef

 above for the list of attributes. Note: the must contain one with an operator on a configured index ColumnDef IndexClause IndexExpression EQ
column. Other structs may be added to the for non-indexed columns to further refine the results of the expression.IndexExpression IndexClause EQ

insert

insert(binary key, column_parent, Column column, consistency_level)ColumnParent ConsistencyLevel

Insert a consisting of (, , ,) at the given . Note that a SuperColumn cannot directly contain binary Column name value timestamp ttl ColumnParent
values – it can only contain sub-Columns. Only one sub-Column may be inserted at a time, as well.

batch_mutate

batch_mutate(map<binary, map<string, list<Mutation>>> mutation_map, consistency_level)ConsistencyLevel

Executes the specified mutations on the keyspace. is a ; the outer map maps the mutation_map map<string, map<string, vector<Mutation>>>
key to the inner map, which maps the column family to the ; can be read as: Mutation map<key : string, map<column_family : string,

. To be more specific, the outer map key is a row key, the inner map key is the column family name.vector<Mutation>>>

A specifies either columns to insert or columns to delete. See and above for more details.Mutation Mutation Deletion

add

add(binary key, column_parent, column, consistency_level)ColumnParent CounterColumn ConsistencyLevel

Increments a consisting of (,) at the given . Note that a SuperColumn cannot directly contain binary values – CounterColumn name value ColumnParent
it can only contain sub-Columns.

remove

remove(binary key, column_path, i64 timestamp, consistency_level)ColumnPath ConsistencyLevel

Remove data from the row specified by at the granularity specified by , and the given . Note that all the values in key column_path timestamp column_p
 besides are truly optional: you can remove the entire row by just specifying the ColumnFamily, or you can remove a ath column_path.column_family

SuperColumn or a single Column by specifying those levels too. Note that the is needed, so that if the commands are replayed in a different timestamp
order on different nodes, the same result is produced.

#
#
#
#
#
#
#
#
#
#
#
https://cwiki.apache.org/confluence/display/CASSANDRA2/RandomPartitioner
#
#
#
#
#
#
#
#
#
#
#
#
#

remove_counter

remove_counter(binary key, column_path, consistency_level)ColumnPath ConsistencyLevel

Remove a counter from the row specified by at the granularity specified by . Note that all the values in besides key column_path column_path column_
 are truly optional: you can remove the entire row by just specifying the ColumnFamily, or you can remove a SuperColumn or a path.column_family

single Column by specifying those levels too. Note that counters have limited support for deletes: if you remove a counter, you must wait to issue any
following update until the delete has reached all the nodes and all of them have been fully compacted.

truncate

truncate(string column_family)

Removes all the rows from the given column family.

describe_cluster_name

string describe_cluster_name()

Gets the name of the cluster.

describe_schema_versions

map<string, list<string>> describe_schema_versions

For each schema version present in the cluster, returns a list of nodes at that version. Hosts that do not respond will be under the key .DatabaseDescriptor
INITIAL_VERSION. The cluster is all on the same version if the size of the map is 1.

describe_keyspace

KsDef describe_keyspace(string keyspace)

Gets information about the specified keyspace.

describe_keyspaces

list<KsDef> describe_keyspaces()

Gets a list of all the keyspaces configured for the cluster. (Equivalent to calling describe_keyspace(k) for k in keyspaces.)

describe_partitioner

string describe_partitioner()

Gets the name of the partitioner for the cluster.

describe_ring

list<TokenRange> describe_ring(keyspace)

Gets the token ring; a map of ranges to host addresses. Represented as a set of instead of a map from range to list of endpoints, because TokenRange
you can't use Thrift structs as map keys: for the same reason, we can't return a set here, even though https://issues.apache.org/jira/browse/THRIFT-162
order is neither important nor predictable.

describe_snitch

string describe_snitch()

Gets the name of the snitch used for the cluster.

describe_version

string describe_version()

Gets the Thrift API version.

system_add_column_family

string system_add_column_family(CFDef cf_def)

#
#
#
https://issues.apache.org/jira/browse/THRIFT-162

Adds a column family. This method will throw an exception if a column family with the same name is already associated with the keyspace. Returns the
new schema version ID.

system_drop_column_family

string system_drop_column_family(ColumnFamily column_family)

Drops a column family. Creates a snapshot and then submits a 'graveyard' compaction during which the abandoned files will be deleted. Returns the new
schema version ID.

system_add_keyspace

string system_add_keyspace(KSDef ks_def)

Creates a new keyspace and any column families defined with it. Callers to first create an empty keyspace and then create column are not required
families for it. Returns the new schema version ID.

system_drop_keyspace

string system_drop_keyspace(string keyspace)

Drops a keyspace. Creates a snapshot and then submits a 'graveyard' compaction during which the abandoned files will be deleted. Returns the new
schema version ID.

system_update_keyspace

string system_update_keyspace(KsDef ks_def)

Updates properties of a keyspace. returns the new schema id.

system_update_column_family

string system_update_column_family(CfDef cf_def)

execute_cql_query

CqlResult execute_cql_query(binary query, Compression compression)

Executes a CQL (Cassandra Query Language) statement and returns a containing the results. Throws , CqlResult InvalidRequestException UnavailableExc
, , .eption TimedOutException SchemaDisagreementException

prepare_cql_query

CqlPreparedResult prepare_cql_query(binary query, Compression compression)

Prepare a CQL (Cassandra Query Language) statement by compiling and returning

the type of CQL statement
an id token of the compiled CQL stored on the server side.
a count of the discovered bound markers in the statement

execute_prepared_cql_query

CqlResult execute_prepared_cql_query(integer item_id, list<binary> values)

Executes a prepared CQL (Cassandra Query Language) statement by passing an id token and a list of variables to bind and returns a CqlResult
containing the results.

Examples

There are a few examples on this page over here.

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

#
#
#
#
#
#
http://wiki.apache.org/cassandra/ClientExamples
https://c.statcounter.com/9397521/0/fe557aad/1/

	API10

