
Counters
Counters in Cassandra

Getting started

In order to use counters in Cassandra you need to first set up a cluster, see the guide for more information. Also note that counters are Getting started
available starting with Cassandra 0.8.0.

Configuration

To use counters, you have to define a column family (or super column family) whose columns will act as counters. To create such a column family counte
 using the CLI, you will have to do:rCF

[default@test] create column family counterCF with default_validation_class=CounterColumnType and
replicate_on_write=true;

Setting the to indicates that the columns will be counters. Setting default_validation_class CounterColumnType replicate_on_write=true
will be optional starting in 0.8.2, but a bug made it default to false in 0.8.0 and 0.8.1, which is unsafe.

Incrementing and accessing counters

Once the cluster is up and running with these settings you can simply increment or decrement long values from the counters as follows (example is using
the python thrift client):

client.add('key1', ColumnParent(column_family='Counter1'), CounterColumn('c1', 100), ConsistencyLevel.ONE)
client.add('key1', ColumnParent(column_family='Counter1'), CounterColumn('c1', -50), ConsistencyLevel.ONE)

And read it back

rv = client.get('key1', ColumnPath(column_family='Counter1', column='c1'), ConsistencyLevel.ONE).counter_column.
value

Please read the rest of this wiki page, especially Technical limitations and Operational considerations to make sure this actually does what you need.

Interface

The interface follows the main API. The main differences are:

CounterColumn requires an i64 value (can be negative) and no timestamp,
Counter can be used inside super columns using the structure, andCounterSuperColumn
Deletion, when used on a counter column family, does not use a timestamp.

Internally, the data store generates timestamps on the server to determine priority of deletion.

The new structures for dealing with counters are:

struct CounterColumn {
 1: required binary name,
 2: required i64 value
}

struct CounterSuperColumn {
 1: required binary name,
 2: required list<CounterColumn> columns
}

struct ColumnOrSuperColumn {
 1: optional Column column,
 2: optional SuperColumn super_column,
 3: optional CounterColumn counter_column,
 4: optional CounterSuperColumn counter_super_column
}

http://wiki.apache.org/cassandra/GettingStarted
#
#

where the pre-existing has the two new fields, specific to counters, and .ColumnOrSuperColumn counter_column counter_super_column

Moreover, as mentioned previously, the timestamp field of Deletion is now optional (but remain mandatory for non counter column family operation).

The counter operations comprise the usual , , , , and batch_mutate get get_slice multiget_slice multiget_count get_range_slice
(secondary indexes on counter column family is not supported at the moment), as well as the following new operations for access to a single counter:

 # counter methods

 /**
 * Increment or decrement a counter.
 */
 void add(1:required binary key,
 2:required ColumnParent column_parent,
 3:required CounterColumn column,
 4:required ConsistencyLevel consistency_level=ConsistencyLevel.ONE)
 throws (1:InvalidRequestException ire, 2:UnavailableException ue, 3:TimedOutException te),

 /**
 * Remove a counter at the specified location.
 */
 void remove_counter(1:required binary key,
 2:required ColumnPath path,
 3:required ConsistencyLevel consistency_level=ConsistencyLevel.ONE)
 throws (1:InvalidRequestException ire, 2:UnavailableException ue, 3:TimedOutException te),

Technical limitations

If a write fails unexpectedly (timeout or loss of connection to the coordinator node) the client will not know if the operation has been performed. A
retry can result in an over count .CASSANDRA-2495
Counter removal is intrinsically limited. For instance, if you issue very quickly the sequence "increment, remove, increment" it is possible for the
removal to be lost (if for some reason the remove happens to be the last received messages). Hence, removal of counters is provided for
definitive removal only, that is when the deleted counter is not increment afterwards. This holds for row deletion too: if you delete a row of
counters, incrementing any counter in that row (that existed before the deletion) will result in an undetermined behavior. Note that if you need to
reset a counter, one option (that is unfortunately not concurrent safe) could be to read its and add .value -value
CounterColumnType may only be set in the . A column family either contains only counters, or no counters at default_validation_class
all.

Further reading

See and especially the for further information about how this works internally (but note that some of the limitations fixed in CASSANDRA-1072 design doc
these technical documents have been fixed since then, for instance all consistency level supported, for both reads and writes).are

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

#
https://issues.apache.org/jira/browse/CASSANDRA-2495
https://issues.apache.org/jira/browse/CASSANDRA-1072
https://issues.apache.org/jira/secure/attachment/12459754/Partitionedcountersdesigndoc.pdf
https://c.statcounter.com/9397521/0/fe557aad/1/

	Counters

