
1.

LiveSchemaUpdates
Modifying Schema on a Live Cluster
This page discusses features available in 0.7.

Under the Hood

A new system table called keeps track of two things: keyspace definitions () and keyspace changes (). definitions SCHEMA_CF MIGRATIONS_CF
TimeUUIDs are used throughout to match migrations up with schema and vice-versa.

Keyspace Definitions (SCHEMA_CF)

The current set of keyspace definitions are stored in a single row, one keyspace per column with a TimeUUID as the row key (also serves as version
identifier), keyspace name as column name, and definition serialization as the column value. There exists a special row, keyed by "Last Migration"
that contains a single column indicating the current schema version UUID. This makes it easy to look up the version and then retrieve it.

Migrations (MIGRATIONS_CF)

MIGRATIONS_CF tracks the individual modifications (add, drop, rename) that are made to the schema. It consists of a single row keyed by "Migrations
 with one column per migration. Each column has the migration version UUID as its name, with the serialized migration as its value.Key"

Operations

Client Operation

Add column family or keyspace
Drop column family or keyspace
Rename column family or keyspace

These are all executed via the . It is expected that you have access if you are using security. For rename and drop operations the client will Thrift API ALL
block until all associated files are renamed or deleted.

Server Migration Process

Applying a migration consists of the following steps:

https://cwiki.apache.org/confluence/display/CASSANDRA2/API

1.
a.

2.
3.
4.
5.
6.

1.
a.

2.
3.
4.

5.
6.

Generate the migration, which includes a new version UUID.
{{DROP}}s only: snapshot the data that is going away.

Update with a new schema row.SCHEMA_CF
Update by appending a migration column.MIGRATION_CF
Update the row in ."Last Migration" SCHEMA_CF
Flush the definitions table.
Update runtime data structures (create directories, do deletions, etc.)

Handling Failure

A node can fail during any step of the update process. Here is an examination of what will happen if a node fails after each part of the update process (see
Server Migration Process above).

Nothing has been applied. Update fails outright.
Same. You will have an extra snapshot though.

Extra data exists in SCHEMA_CF but will be ignored because "Last Migration" was not updated.
Extra data exists in SCHEMA_CF and MIGRATION_CF but will be ignored because "Last Migration" was not updated.
Broken: commit log will not be replayed until *after* schemas are loaded on restart. This means that the "Last Migration" will be read, but will not
be able to be loaded and applied.
Startup will happen normally.
Startup will happen normally.

If a node crashes during a migration, chances are you will have to do some manual cleanup. For example, if a node cashes after steps 4 or 5 of a DROP
migration, you will need to manually delete the data files. (Not deleting them does no harm unless you 'recreate' the same CF via later on. Then you ADD
have an instant database.)

Starting Up

When a node starts up, it checks to find out the latest schema version it has. If it finds nothing (as would happen with a new cluster), it loads SCHEMA_CF
nothing and logs a warning. Otherwise, it uses the uuid it just read in to load the correct row from . That row is deserialized into one or more SCHEMA_CF
keyspace definitions which are then loaded in a manner similar to the load-from-xml approach used in the past.

At the same time, the node incorporates its schema version UUID into the gossip digests it sends to other nodes. It may be the case that this node does
not have the latest schema definitions (as a result of network partition, bootstrapping a new node, or any other reason you can think of). When a version
mismatch is detected the definition promulgation mechanism described next is invoked.

Definition Promulgation

Definition promulgation consists of two phases: and . is a way for node A to declare to node B "this is the schema version I announce push announce
have". If the versions are equal, the message is ignored. If A is newer, B responds with an to A (this functions as a request for updates). If A is announce
older, B responds with a containing all the migrations from B that A doesn't have.push

When a schema update originates from the client (Thrift), gossip promulgation is bypassed and this approach is used to push announce-announce-push
migrations to other nodes.

New Cluster (Fresh 0.7)

For new clusters, things will work best if you start with one node and apply migrations using Thrift until you get the schema you want. Then bring new
nodes online and they will pull migrations from the first node (or each other in a large cluster).

Alternatively, you could then shut down the first node and manually copy its and to each new node in the cluster.SCHEMA_CF MIGRATIONS_CF

The simplest method of applying these schema changes is with . You can either do this interactively, or place the commands in a bin/cassandra-cli
file and apply them in batch mode (type and to see the available commands). For example:help help <command>

$ cat schema.txt
/* Create a new keyspace */
create keyspace Keyspace1 with replication_factor = 3 and placement_strategy = 'org.apache.cassandra.locator.
RackUnawareStrategy';

/* Switch to the new keyspace */
use Keyspace1;

/* Create new column families */
create column family Standard1 with column_type = 'Standard' and comparator = 'BytesType';
create column family Standard2 with column_type = 'Standard' and comparator = 'UTF8Type' and rows_cached =
10000;
$ bin/cassandra-cli --host localhost --batch < schema.txt

Existing Cluster (Upgrade from 0.6)

To provide some backwards compatibility, we've provided a JMX method in the that can be used to manually load schema StorageServiceMBean
definitions from storage-conf.xml. This is a one-shot operation though, and will only work on a system that contains no existing migrations. If you are
upgrading a cluster, you will probably only have to do this for one node (a seed). Gossip will take care of promulgating the changes to the rest of the nodes
as they come online.

For those who dont know how to do it (like me):

ps aux | grep cassandra # get pid of cassandra
jconsole PID

MBeans -> org.apache.cassandra.db -> -> Operations -> loadSchemaFromYAMLStorageService

Lastly, there is a system tool that can poke the same JMX method without having to remember its location:

bin/schematool HOST PORT import

Concurrency

It is entirely possible and expected that a node will receive migration pushes from multiple nodes. Because of this, all migrations are applied on a single-
threaded stage and versions are checked throughout to make sure that no migration is applied twice, and no migration is applied out of sync.

Each migration knows the version UUID of the migration that immediately precedes it. If a node is asked to apply a migration and its current version UUID
does not match the last version UUID of the migration, the migration is discarded.

One weakness of this model is that it is vulnerable if a new update starts before another update is promulgated to all live nodes--only one migration can be
active within a cluster at any time. One way to get around this is to choose one node and only initiate migrations through it.

|statshttps://c.statcounter.com/9397521/0/fe557aad/1/

#
https://c.statcounter.com/9397521/0/fe557aad/1/

	LiveSchemaUpdates

