
Java5FeaturesAndJdo
Java5 Language Features in JDO 1.1 and 2.0
This activity clarifies the JDO spec on persistence-capable classes using the new language features in Java 5, namely enums and generics.

Generics
generics as persistent field types ...

JDO implementations need the information about field types that in JDO 1 is provided by the metadata element collection and map. The user can specify
the type of the elements of the collection and the types of the key and value of the map. For example,

class Employee {
...
Map<Project, Integer> projectNumbers;
Set<Skill> skillSet;
...
}

generics with wildcards as persistent field types...

Generic wildcards allow the user to bound the types of persistent collection elements, or map keys and values. For example, if we know that a can Set
only contain elements, we might declare it as a . Mapping this persistent field to the datastore is similar to Number Set<? extends Number> skills;
the issue of mapping a field of a superclass to the datastore, e.g. . And it is similar to mapping . We believe that as far as Number skill; Set<Number>
JDO is concerned, the implementation can consider exactly as .Set<? extends Number> Set<Number>

fields of type identifier type ...

The only implementation class for type identifiers is Class, which cannot be persistent. I (clr) propose to wait until a use-case is developed.

generics arrays ...

This seems to apply only to methods of generic classes and not to persistent behavior. I (clr) propose to wait until a use-case is developed.

as persistence-capable classes ...

This usage is not well-defined. I (clr) think that most uses would involve some kind of wrapper or holder that was type-specific. I (clr) propose to wait until a
use-case is developed.

Enums
Java 5 has introduced linguistic support for enumerated types in form of declarations, for example:enum

enum Season { WINTER, SPRING, SUMMER, FALL };

In Java, declarations have a number (surprising) features, which exceed their counterparts in other languages:enum

An declaration defines a fully fledged class (dubbed an enum type).enum
An enum type may have arbitrary methods and fields and may implement arbitrary interfaces.
Enum types have efficient implementations of all the methods, are and , and the serial form is designed to Object Comparable Serializable
withstand arbitrary changes in the enum type.

To point out commonalities, Java enum types are no different from other user-defined classes, except that

the number of instances is fixed at compile time,
there are no constructors that can be called,

there's a generated method returning an array of all instances,static public T[] values()

there are new, reflective methods for enums, like and . Class.isEnum() Class.getEnumConstants()

For enum type support in JDO, we have to discuss

enum types as managed field types ...
enum types as persistence-capable classes ...
the new collection types and ... EnumSets EnumMaps

JDO Specific Annotations
For managed relations, we may add javax.jdo.annotation.Inverse for use in a PC class:

public class Department {
...
@javax.jdo.annotation.Inverse("department")
Set<Employee> employees;
...
}

public class Employee {
...
Department department;
...
}

This annotation may be used to generate 'mapped by' metadata.

	Java5FeaturesAndJdo

