Persistentinterfaces

Persistent Interfaces

Persistent Interfaces is a feature of JDO 2 that allows users to define their domain object model in terms of Java interfaces instead of Java classes. For
example, this defines a persistence-capable class called Company with two persistent fields:

cl ass Conpany {
| ong conpanyi d;
String nane;

}

<cl ass nanme="Conpany" >
<field name="conpanyi d" primary-key="true"/>
<field name="nane" colum = "NAME"/>

</ cl ass>

To use an interface instead, this defines a persistent interface called ICompany with two properties.

interface | Conmpany {
| ong get Conpanyi d();
voi d set Conpanyi d(long id);
String getNane();
void set Name(String nane);

}

<interface name="| Conpany" >
<property nanme="conpanyi d" prinmary-key="true"/>
<property name="nane" colum = "NAMVE"/>
</interface>

A goal is to map the interfaces in package or g. apache. j do. t ck. pc. conpany (hereinafter "the company package") to exactly the same schema as is
used for the classes, and to use the same Conpl et enessTest and xml data. This way, all of the standard mappings of the company model can be used
as is, and any bug fixes to the handling of the schema, xml data, or comparison of data will be automatically propagated to the interface tests.

XML Test Data

To change the xml test data to use factories, the attributes f act or y- net hod and f act or y- bean are added to the test data bean elements.

<bean i d="conpanyl" cl ass="org. apache.jdo.tck. pc. conpany. Conpany" >
<constructor-arg index="0" type="long">
<val ue>1</val ue></ constructor-arg>
<constructor-arg index="1" type="java.lang. String">
<val ue>Sun M crosystens, I|nc.</value></constructor-arg>
<constructor-arg index="2" type="java.util.Date">
<val ue>11/ Apr/ 1952</ val ue></ const r uct or - ar g>
</ bean>

is changed to become

<bean i d="conpanyl" factory-bean="conpanyFactory"
fact ory- net hod="newConpany" >

<constructor-arg index="0" type="long">

<val ue>1</ val ue></ constructor-arg>
<constructor-arg index="1" type="java.lang.String">

<val ue>Sun M crosystens, |nc.</val ue></constructor-arg>
<constructor-arg index="2" type="java.util.Date">

<val ue>11/ Apr/ 1952</ val ue></ const r uct or - ar g>
</ bean>

This requires an instance of Company{{ Factory be registered under the name companyFactory in the Bean}}Fact ory, which is subcl assed by
ConpanyMbdel "Reader.

Refactoring

The company package has been refactored to have each domain class implement the corresponding interface. The algorithm of the CompletenessTest
creates an in-memory domain model graph from xml data and make its elements persistent. Then, a new transient in-memory domain model graph is
constructed from the same xml data and the transient graph is used as the model to verify that the graph of persistent instances as fetched from the
database is isomorphic to the transient graph.

CompanyFactory Patterns

Since persistent instances that implement the persistent interfaces use a factory pattern, we introduce a CompanyFactory concept that allows a runtime
switch between various factories. The transient graph that is used to compare to the persistent graph is always constructed using the factory that creates
instances of the concrete classes. The persistent graph is constructed using one of these patterns:

® Company{{ Factory}}Concr et e'Class: the factory instantiates new instances of the concrete classes

® Company{{'Factory}}PM nterface: the factory calls the Persistence'Manager newlnstance method with the interfaces as
parameters

® Company{{ Factory}}PMAbst ract Cl ass: the factory calls the Persistence Manager newlnstance method with abstract classes
that implement the interfaces as parameters

® Company{{ Factory}}PMConcr et eCl ass: the factory calls the Persistence Manager newlnstance method with the concrete
classes as parameters

CompanyFactory Interface

CompanyFactory is the interface that each factory must implement. The methods in the interface are those that are required by the current xml data
implementations. They include constructors for each concrete class in the model.

The strategy for implementation is for a registry class Company{{ Factory}}Regi stry that instantiates the default inplenentation of
ConpanyFact ory, ConpanyFact or yConcr et e Class, that contains methods that instantiate a new instance of the concrete class.

An application program, e.g. Conpl et enessTest uses the Company{{ Factory}}Regi stry to create and regi ster the conpany factory,
using the class nane and PersistenceManager instance to be used by the conpany factory. The ConpanyMdel 'Reader (the
bean factory) obtains the company factory instance from the registry via the static method ConpanyFact or yRegi stry. get | nst ance() and installs it
in the bean factory under the name "companyFactory". Then, when the xml file is read, the factory-bean reference "companyFactory" is resolved to the
factory.

The Company{{'Factory}}Regi stry cl ass contains nethods to create and register factories. It does not itself inplenent
the ConpanyFactory interface but delegates to an instance of a class that does inplenent the Conpany Factory interface.

Abstract Implementation Class

An abstract class ConpanyFact or yAbst r act | npl contains implementations for each required method, and eight abstract methods to create a new
instances with no properties set. The properties are then set using setProperty methods. This allows a subclass to implement the CompanyFactory
interface simply by implementing the eight abstract methods.

public abstract class ConpanyFactoryAbstractlnpl inplenments ConpanyFactory {
protected PersistenceManager pm

/** Creates a new i nstance of ConpanyFactoryAbstract!npl */

publ i c ConmpanyFactoryl nterfaceAbstract!| npl (Persi stenceManager pn) {
this.pm= pm

}

abstract | Address newAddress(); // inplemented in subclass

public | Address newAddress(long addrid, String street, String city,
String state, String zipcode, String country) {
| Address result = newAddress();
resul t.set Addri d(addrid);
result.setStreet(street);
result.setCity(city);
result.setState(state);
resul t. set Zi pcode(zi pcode) ;
resul t.set Country(country);
return result;

"All a concrete factory implementation has to do" is to subclass the abstract Company{{ Factory}}Abst r act “Impl and provide implementations for the
abstract methods.

#
#

public class ConpanyFactoryPM nterface
ext ends ConpanyFactoryl nterfaceAbstract!|npl {

/** Creates a new instance of ConpanyFactoryPersistentlnterface */
publ i ¢ ConpanyFact oryPM nt erf ace(Persi st enceManager pm {

super (pm;
}

| Addr ess newAddress() {
return (1 Address)pm new nstance(| Address. cl ass);

}

Build Issues

A new system property j do. t ck. mappi ng. conpanyf act ory is used to pick the company factory used to create the persistent object graph. After
constructing the persistent object graph, the default factory is reset so that during construction of the compared objects the standard constructor is used.
The maven.xml file needs to pass the system property to the CompletenessTest.

<goal name="doRuntck.jdori">
<java fork="yes" dir="${jdo.tck.testdir}"
<sysproperty key="jdo.tck. mappi ng. conpanyf actory"
val ue="${]j do. t ck. mappi ng. conpanyf actory}"/>
</java>
</ goal >

Configurations can specify this property in the .conf file:

%at test/conf/clr.conf
jdo.tck.description = Conpl eteness test with factory class
#j do. t ck. mappi ng. conpanyf act ory=
org.apache.jdo.tck. pc. conpany. ConpanyFact or yConcr et eCl ass
j do. t ck. mappi ng. conpanyf act ory=
or g. apache. j do. t ck. pc. conpany. ConpanyFact or yPM nt er f ace
jdo.tck.classes = org. apache.j do.tck. mappi ng. Conpl et enessTest
jdo.tck.testdata = org/apache/jdo/tck/ pc/ conpany/ conpanyNoRel ati onshi ps. xm
jdo.tck.mapping = 0

New Sub-package acompany

All the components described so far will remain in the company package. | propose to add the components to instantiate persistent abstract classes into a
subpackage, or g. apache. j do. t ck. pc. conpany. aconpany and to implement the abstract classes that implement the interfaces as well as the
company factory that instantiates the abstract classes using the persistence manager newlnstance method with the abstract class as the argument.

Feeback Requested
The interface Company{{ Factory is implemented by subclasses of Company}}Fact or yAbst r act “Impl. Here are proposed names for the components:

CompanyFactory seems reasonable

Company{{ Factory}} Registry is the class that manages the registration of the factory.

Company{{ Factory}}Abstract I npl is the abstract inplenentation class for the Conpany Factory interface.

Company{{ Factory}}Concr et e Class is the factory that instantiates new instances of the concrete classes

Company{{'Factory}}PM nterface is the factory that calls the Persistence Manager newlnstance method with the interfaces

as parameters

® Company{{ Factory}}PMAbstract Cl ass is the factory that calls the Persistence Manager newinstance method with abstract
classes that implement the interfaces as parameters

® Company{{ Factory}}PMConcreteC ass is the factory that calls the Persistence'Manager newlnstance method with the

concrete classes as parameters

	PersistentInterfaces

