
QueryTests
TCK20: JDO2 Query Test Cases
JDOQL 2.0

New TCK Query Tests

Language Extensions

Keywords

New Operators

New Supported Methods

Parameters

Variables

Other Language Changes

Query API Extensions

Result Handling

SQL Queries

Deletetion by Query

Testcase Pattern

Positive Test

Negative Test

JDOQL 2.0
JDO 2.0 adds the following methods to the Query API:

setResult
setGrouping
setUnique
setResultClass
setRange
setUnique
setUnmodifiable
isUnmodifiable
setExtensions
addExtension

JDO 2.0 extensions of the JDO query language JDOQL:

Single string JDOQL
Result specification

Projections of fields and relationships
One or more result expressions
Distinct results
Unique query result
Default result class for one or more result expressions
User defined result class
Naming of result expressions

Aggregate functions MIN, MAX, SUM, AVG, and COUNT
Grouping of query result

One or more grouing expressions
Having clause

New methods in Query filters:
Map support: get(Object), containsKey(Object), containsValue(Object), isEmpty()
Additional string methods: toLowerCase(), toUpperCase(), indexOf(String), indexOf(String, int), matches(String), substring(int), substring
(int, int)
Support for other methods: Math.abs(numeric), Math.sqrt(numeric), JDOHelper.getObjectId(Object)

New operators %(modulo) and instanceof
Support for implicit parameters
Support for implicit variables
Deletion by query

NewQueryTests New TCK Query Tests
Package names of all query test classes start with .org.apache.jdo.query.

Package names of all pc classes start with .org.apache.jdo.tck.pc.

Package names of all result classes start with .org.apache.jdo.tck.query.result.classes.

Language Extensions

Keywords

Assertion JDOQL Testc
lass

Com
 ment

 Keywords must not be A14.4-6:
used as package names, class
names, parameter names, or
variable names in queries.

SELECT INTO range.PersonResult company.Person jdoq
l.
keyw
ords.

Inva
lidU
seOf
Keyw

 ords

Nega
tive
test.

SELECT INTO range FROM
company.Person

SELECT FROM select.Person

SELECT FROM select

SELECT FROM company.
Person PARAMETERS int this

SELECT FROM company.
Person VARIABLES long this

: Keywords are permitted A14.4-7
as field names only if they are on
the right side of the "." in field
access expressions

valid:
SELECT this.select FROM query.JDOQLKeywordsAsFieldNames

jdoq
l.
keyw
ords.

Keyw
ords
AsFi
eldN

 ames

Positi
ve
and
negat
ive
test.
New
pc
class
requir
ed.

invalid:
SELECT select FROM query.
JDOQLKeywordsAsFieldNames

A14.6.13-1: The String version of
Query represents all query
elements using a single string. The
string contains the following
structure:

 SELECT firstname AS firstName, lastname AS lastName INTO FullName FROM company.FullTimeEmployee WHERE
 salary > 1000 & projects.contains(project) & project.budget > limit VARIABLES Project project PARAMETER

 S limitBigDecimal IMPORTS IMPORT company.Project; IMPORT java.math.BigDecimal GROUP BY firstname,
 lastname HAVING lastname.startsWith('emp') ORDER BY personid RANGE 1 TO 5

jdoq
l.
keyw
ords.

Sing
leSt

 ring

Positi
ve
test.
New
result
class
requir
ed.

 Keywords, identified A14.6.13-2:
above in , are either all upper-bold
case or all lower-case. Keywords
cannot be mixed case.

valid:
SELECT FROM company.Person

jdoq
l.
keyw
ords.

Uppe
rcas
eLow
erca
se

Positi
ve
and
negat
ive
test.

valid:
select from company.Person

valid:
select FROM company.Person

invalid:
SeLeCt company.PersonFrOm

#
#
#
#

New Operators

Assertion JDOQL Testclass Comment

 modulo operatorA14.6.2-40: SELECT FROM company.Person WHERE personid % 2 == 0 jdoql.operators.
Modulo

Positive
test.

 instanceof A14.6.2-41:
operator

 SELECT FROM company.Employee WHERE mentor instanceof company.PartTimeEmployee jdoql.operators.
Instanceof

Positive
test.

New Supported Methods

Assertion JDOQL Testclass Comment

 Supported Map methods:A14.6.2-46:

get(Object)
containsKey(Object)
containsValue(Object)

get:
 SELECT FROM Person WHERE phoneNumbers.get('home') ==

'1111'

jdoql.methods.
SupportedMapMethods

Positive
Test.

containsKey:
 SELECT FROM Person WHERE phoneNumbers.containsKey

('home')

containsValue:
 SELECT FROM Person WHERE phoneNumbers.get('1111')

: New supported String methods:A14.6.2-47

toLowerCase()
toUpperCase()
indexOf(String)
indexOf(String, int)
matches(String)
substring(int)
substring(int, int)
startsWith()
endsWith()

toLowerCase:
 SELECT FROM company.Person WHERE firstname.toLowerCase()

== 'john'

jdoql.methods.
SupportedStringMethods

Positive test.

toUpperCase:
 SELECT FROM company.Person WHERE firstname.toUpperCase()

== 'EMP1FIRST'

indexOf:
 SELECT FROM company.Person WHERE firstname.indexOf

('First') == 4

indexOf:
 SELECT FROM company.Person WHERE firstname.indexOf

('First', 2) == 4

matches:
 SELECT FROM company.Person WHERE firstname.matches

('*First')

substring:
 SELECT FROM company.Person WHERE firstname.substring(4)

== 'First'

substring:
 SELECT FROM company.Person WHERE firstname.substring

(4,9) == 'First'

startsWith:
 SELECT FROM company.Person WHERE firstname.startsWith

('emp')

endsWith:
 SELECT FROM company.Person WHERE firstname.endsWith

('First')

 Supported Math methods:A14.6.2-48:

Math.abs(numeric)
Math.sqrt(numeric)

 SELECT FROM company.FullTimeEmployee WHERE Math.abs
(salary) > 10000

jdoql.methods.
SupportedMathMethods

Positive
test.

 SELECT FROM company.FullTimeEmployee WHERE Math.sqrt
(salary) > 100

 Supported JDOHelper methods:A14.6.2-49:

JDOHelper.getObjectId(Object)

SELECT JDOHelper.getObjectId(this) FROM company.
Person

jdoql.methods.
SupportedJDOHelperM
ethods

Positive
test.

Parameters

Assertion JDOQL Testclass Comment

: Parameters must all be declared explicitly via or all be declared A14.6.3-2 declareParameters
implicitly in the filter.

valid:
 SELECT FROM company.Person WHERE

 firstname = param PARAMETERS String param

jdoql.
paramet
ers.
MixedPa
rameters

Positive
and
negative
test.

valid:
 SELECT FROM company.Person WHERE firstname = :param

invalid:
 SELECT FROM company.Person WHERE firstname = param

 Parameters implicitly declared (in the result, filter, grouping, ordering, or range) are identified by A14.6.3-3:
prepending a ":" to the parameter everywhere it appears. All parameter types can be determined by one of
the following techniques:

result:
 SELECT avg(employee.salary), :limit FROM

 company.FullTimeEmployee WHERE employee.
salary > :limit

jdoql.
paramet
ers.
Implici
tParame
ters

Positive
test.

filter:
 SELECT FROM company.Person WHERE firstname = :param

grouping:
...

ordering:
...

range:
 SELECT FROM company.FullTimeEmployee RANGE :one TO :ten

 If implicit parameters are used, their order of appearance in the query determines their order A14.6.13-3:
for binding to positional parameters for execution.

 SELECT FROM company.Person WHERE
 firstname == :param1 & lastname == :param2

jdoql.
paramet
ers.
OrderOf
Paramet
ers

Positive
test.

Variables

Assertion JDOQL Testcla
ss

Comm
ent

 ?? A variable that is not constrained with an explicit contains clause is A14.6.5-1:
constrained by the extent of the persistence capable class (including subclasses).

 SELECT department FROM company.Person WHERE firstname.endsWith
 ('First') VARIABLES Department department

jdoql.
variab
les.
Uncons
traine
dVaria
ble

Posisti
ve
test.

: ?? If the class does not manage an , then no results will satisfy A14.6.5-2 Extent
the query.

(javax.jdo.option.UnconstrainedQueryVariables)
SELECT v FROM Person VARIABLES vNoExtent

jdoql.
variab
les.
Variab
lesWit
houtEx
tent

Positiv
e test.
New
pc
class
require
d.

 All variables must be explicitly declared, or all variables must be A14.6.5-3:
implicitly declared.

explicit:
 SELECT FROM company.Employee WHERE team.contains(employee) &

 employee.firstname == 'emp1First' & projects.contains(project) &
 project.name == 'orange' VARIABLES Employee employee; Project

project

jdoql.
variab
les.
MixedV
ariabl
es

Positiv
e and
negativ
e test.

implicit:
 SELECT FROM company.Employee WHERE team.contains(employee) &

 employee.firstname == 'emp1First' & projects.contains(project)
& project.name == 'orange'

invalid:
 SELECT FROM company.Company WHERE departments.contains

 (department) & department.name == 'Development' VARIABLES
Employee employee

 Names are treated as variable names if they are explicitly declared via A14.6.5-4: d
. Otherwise, names are treated as field names if they are eclareVariables

members of the candidate class. Finally, names are treated as implicitly defined
variable names.

explicit:
 SELECT FROM company.Employee WHERE team.contains(employee) &

 employee.firstname == 'emp1First' VARIABLES Employee employee

jdoql.
variab
les.
Variab
lesAnd

 Fields

Positiv
e test.

implicit:
 SELECT FROM company.Employee WHERE team.contains(employee) &

employee.firstname == 'emp1First'

field name:
 SELECT FROM company.Person WHERE firstname == 'emp1First'

Other Language Changes

#

Assertion JDOQL Testclass Comm
ent

 There is no distinction made between character literals and literals. Single character literals can A14.6.2-42: String String
be used wherever character literals are permitted. literals are allowed to be delimited by single quote marks or String
double quote marks. This allows literal filters to use single quote marks instead of escaped double quote marks.String

valid:
SELECT FROM mylib.

 PrimitiveTypes WHERE
stringNull.startsWith('Even')
OR charNotNull == 'O'

jdoql.
Characte
rAndStri
ngLitera
ls

Positiv
e and
negativ
e test.

invalid:
 SELECT FROM mylib.PrimitiveTypes WHERE stringNull.startsWith('Even') OR charNotNull == 'O.'

 Identifiers that are persistent field names or field names are required to be supported A14.6.2-43: public final static
by JDO implementations.

field names:
 SELECT FROM company.Person VAR

IABLES String firstname
PARAMETERS long personid

jdoql.
Identifi
ersEqual
FieldNam
es

Positiv
e test.

static field names:
SELECT FROM fieldtypes.AllTypes WHERE NUM_VALUES == 10

 A14.6.8-1: setRange(long fromIncl, long toExcl) SELECT lastname FROM company.
Person RANGE 1 TO 10

jdoql.
Positive
Range

Positiv
e test.

 If evaluates to , if the result of the query execution is a List, the returned A14.6.8-2: ((toExcl - fromIncl) <= 0) true
List contains no instances, and an Iterator obtained from the List returns to . If the result of the query false hasNext()
execution is a single instance , it will have a value of .(setUnique(true)) null

SELECT lastname FROM company.
Person RANGE 10 TO 1

jdoql.
Negative
Range

Positiv
e test.

 A14.6.8-3: setRange(String range); SELECT lastname FROM company.
Person RANGE 1 TO 10

jdoql.
RangeAsS
tring

Positiv
e test.

Query API Extensions

Assertion JDOQL Tes
tcla
ss

Com
ment

 Construct a new query instance using the specified as the single-A14.5-11: String
string representation of the query.

SELECT FROM company.Person api.

New
Que
ryS
ing
leS
tri
ng

Positi
ve
test.

 Construct a new query instance with the given candidate class from a A14.5-12:
named query.

valid, unique is false, unmodifiable is false:
 SELECT firstname INTO ...FullName FROM company.Person

api.

New
Nam
edQ
uery

Positi
ve
test
and
negati
ve
test.
Add
JDO
metad
ata
for
name
d
querie
s.

valid, unique is true, unmodifiable is false:
 SELECT firstname INTO ...FullName FROM company.Person WHERE

firstname == 'emp1First'

invalid, unique is true, unmodifiable is false:
 SELECT firstname INTO ...FullName FROM company.Person

invalid, unique is false, unmodifiable is true:
 SELECT firstname INTO ...FullName FROM company.Person

 If the named query is not found in already-loaded metadata, the query is A14.5-13:
searched for using an algorithm. Files containing metadata are examined in turn until
the query is found. The order is based on the metadata search order for class
metadata, but includes files named based on the query name.

SELECT FROM company.Person api.

Met
ada
taS
ear
chO
rder

Positi
ve
test.
Add
JDO
metad
ata
for
name
d
querie
s.

 If the metadata is not found in the above, a is thrown.A14.5-14: JDOUserException api.

Nam
edQ
uer
yNo
tFo

 und

Negati
ve
test.

 The instance returned from this method can be modified by the A14.5-15: Query
application, just like any other instance.Query

SELECT FROM company.Person WHERE firstname == 'emp1First' api.

Cha
nge
Que
ry

Positi
ve
test.

 Named queries must be compilable. Attempts to get a named query that A14.5-16:
cannot be compiled result in .JDOUserException

SeLeCt company.PersonFrOm api.

Inv
ali
dNa
med
Que
ry

Negati
ve
test.
Add
JDO
metad
ata
for
name
d
querie
s.

 This method retrieves the fetch plan associated with the . It always A14.6-21: Query
returns the identical instance for the same instance. Any change made to the Query
fetch plan affects subsequent query execution.

SELECT FROM company.Person api.

Fet
chP
an

Positi
ve
test.

 Specify the results of the query if A14.6-16: void setResult (String result);
not instances of the candidate class.

valid:
SELECT lastname FROM company.Person

api.

Set
Res

 ult

Positi
ve
test
and
negati
ve
test.

invalid:
SELECT noname FROM company.Person

 Specify the grouping of A14.6-17: void setGrouping (String grouping);
results for aggregates.

SELECT lastname FROM company.Person GROUP BY lastname api.

Set
Gro
upi
ng

Positi
ve
test.

 Specify that there is a single A14.6-18: void setUnique (boolean unique);
result of the query.

 SELECT UNIQUE firstname FROM company.Person WHERE lastname ==
emp1Last'

api.

Set
Uni

 que

Positi
ve
test.

 Specify the class to A14.6-19: void setResultClass (Class resultClass);
be used to return result instances.

 SELECT firstname, lastname INTO ...FullName FROM company.Person api.

Set
Res
ult
Cla
ss

Positi
ve
test.
New
result
class
requir
ed.

 Specify the number of A14.6-20: setRange(int fromIncl, int toExcl);
instances to skip over and the maximum number of result instances to return.

SELECT FROM company.Person RANGE 1 TO 10 api.

Set
Ran
ge

Positi
ve
test.

 The option, when set to , disallows further A14.6-22: Unmodifiable true
modification of the query, except for specifying the range and result class and ignore

 option.Cache

SELECT FROM company.Person api.

Unm
odi
fia
ble
Que
ry

Negati
ve
test.

 The single string query is first parsed to yield the result, result class, filter, A14.6-23:
variable list, parameter list, import list, grouping, ordering, and range. Then, the values
specified in APIs , , , , setResult setResultClass setFilter declareVariables

, , , , and declareParamters declareImports setGrouping setOrdering setRa
 override the corresponding settings from the single string query.nge

 SELECT firstname AS firstName, lastname AS lastName INTO ...
 FullName FROM company.FullTimeEmployee WHERE salary > 1000 &

 projects.contains(project) & project.budget > limit VARIABLES
 Project project PARAMETERS limitBigDecimal ORDER BY salary GROUP

 BY firstname, lastname HAVING lastname.startsWith('R') RANGE 1 TO
10

api.

Sin
gle
Str
ing
Que
ry

Positi
ve
test.
New
result
class
requir
ed.

 Some JDO vendors provide extensions to the query, and these extensions A14.9-1:
must be set in the query instance prior to execution.

SELECT FROM company.Person api.

Que
ryE
xte
nti

 ons

Positi
ve
test.

#
#

Result Handling

Assertion JDOQL Testclass Com
ment

 If is specified, the query result does not include any A14.6.9-1: distinct
duplicates. If the result parameter specifies more than one result expression,
duplicates are those with matching values for each result expression.

SELECT DISTINCT FROM company.Person result.
DistinctQuery

Positi
ve
test.

 Queries against an extent always consider only distinct candidate A14.6.9-2:
instances, regardless of whether is specified. Queries against a distinct
collection might contain duplicate candidate instances; the keyword distinct
removes duplicates from the candidate collection in this case.

)(javax.jdo.option.UnconstrainedQueryVariables SELECT FROM company.Person VAR
IABLES Project project

jdoql.
DistintCandi
dateInstances

Positi
ve
test.

 If a variable or a field of a variable is included in the result, either A14.6.9-3:
directly or via navigation through the variable, then the semantics of the contains
clause that include the variable change. In this case, all values of the variable
that satisfy the filter are included in the result.

variable:
 SELECT project FROM company.Employee WHERE projects.contains(project) &

 project.name == 'orange' VARIABLES Project project

result.
VariableInRe
sult

Positi
ve
test.

field of variable:
 SELECT project.name FROM company.Employee WHERE projects.

 contains(project) & project.name == 'orange' VARIABLES
Project project

 If any result is a navigational expression, and a non-terminal field or A14.6.9-4:
variable has a value for a particular set of conditions (the result calculation null
would throw), then the result is null for that result NullPointerException
expression.

field:
 SELECT FROM company.Employee WHERE projects.contains(project)

result.
NPEInResultE
xpr

Positi
ve
test.

variable:
 SELECT FROM company.Employee WHERE firstname == variable.

 firstname VARIABLES Employee variable;

 The result expressions include: ... The result expression can be A14.6.9-5:
explicitly cast using the (cast) operator.

 SELECT DISTINCT (FullTimeEmployee)manager FROM company.Employee result.
CastResult

Positi
ve
test.

 returns . returns for integral types and the A14.6.9-6: Count Long Sum Long
field's type for other types (, , , and Number BigDecimal BigInteger Float Dou

). is invalid if applied to non- types. , , and return ble Sum Number Avg min max
the type of the expression.

Count:
SELECT COUNT(salary) from company.FullTimeEmployee

result.
AggregateRes
ult

Positi
ve
and
negat
ive
test.

Sum:
 SELECT SUM(salary) from company.FullTimeEmployee (TBD for

all integral types)

invalid Sum:
 SELECT SUM(hiredate) from FullTimeEmployee (TBD for all non-

Number types)

Avg:
 SELECT AVG(salary) from company.FullTimeEmployee (TBD for

all integral types)

invalid Avg:
 SELECT AVG(hiredate) from FullTimeEmployee (TBD for all non-

Number types)

Min:
 SELECT MIN(salary) from company.FullTimeEmployee (TBD for

all integral types)

Max:
 SELECT MAX(salary) from company.FullTimeEmployee (TBD for

all integral types)

 If the returned value from a query specifying a result is , this A14.6.9-7: null
indicates that the expression specified as the result was .null

valid:
SELECT lastname FROM company.PERSON

result.
NullResults

Positi
ve
test.

 If not specified, the result defaults to A14.6.9-8: distinct this as C SELECT FROM company.Department result.
DefaultResult

Positi
ve
test.

 When grouping is specified, each result expression must be one of: A14.6.10-1:
an expression contained in the grouping expression; or, an aggregate expression
evaluated once per group. The query groups all elements where all expressions
specified in have the same values. The query result consists of setGrouping
one element per group.

valid:
 SELECT department, SUM(salary) FROM company.FullTimeEmployee GROUP BY

department

result.
Grouping

Positi
ve
and
negat
ive
test.

invalid:
 SELECT department, salary FROM company.FullTimeEmployee

GROUP BY department

 When is specified, the expression consists of A14.6.10-2: having having
arithmetic and boolean expressions containing aggregate expressions.

valid:
 SELECT department, SUM(salary) FROM company.FullTimeEmployee GROUP BY

 department HAVING COUNT(department.employees) > 0

result.
Having

Positi
ve
and
negat
ive
test.

invalid:
 SELECT department, SUM(salary) FROM company.FullTimeEmployee

 GROUP BY department HAVING firstname == 'emp1First'

 When the value of the flag is , then the result of a A14.6.11-1: Unique true
query is a single value, with used to indicate that none of the instances in null
the candidates satisfied the filter. If more than one instance satisfies the filter,
and the range is not limited to one result, then throws a execute JDOUserExcep
tion.

valid, result is non-null:
 SELECT UNIQUE FROM company.Company WHERE companyid == 1

result.
Unique

Positi
ve
and
negat
ive
test.

valid, result is null:
 SELECT UNIQUE FROM company.Company WHERE name == 'non-

existent'

invalid:
SELECT UNIQUE FROM company.Person

#
#

 The default Unique setting is for aggregate results without a A14.6.11-2: true
grouping expression, and otherwise.false

true:
SELECT COUNT(THIS) FROM company.Person

result.
DefaultUnique

Positi
ve
test.

false grouping:
 SELECT FROM company.Person GROUP BY lastname

false:
SELECT FROM company.Person

<ac:structured-macro ac:name="unmigrated-wiki-markup" ac:schema-version="
1" ac:macro-id="ed9d5f5c-d20e-40c2-a25e-47235ca02ea6"><ac:plain-text-
body><![CDATA[

*A14.6.12-1:*The result class may be one of the classes , , , java.lang Character Boolea Byte Sh
, , , , , , or ; or one of the classes ort Integer Long Float Double String Object[] java.math Big

 or ; or the class ; or the interface ; or one of Integer BigDecimal java.util Date java.util Map
the classes , , or ; or a user-defined class.]]></ac:plain-text-body><java.sql Date Time Timestamp
/ac:structured-macro>

If there are multiple result expressions, the result class must be able to hold all elements of the
result specification or a is thrown.JDOUserException
If there is only one result expression, the result class must be assignable from the type of the
result expression or must be able to hold all elements of the result specification. A single value
must be able to be coerced into the specified result class (treating wrapper classes as
equivalent to their unwrapped primitive types) or by matching. If the result class does not
satisfy these conditions, a is thrown.JDOUserException
A constructor of a result class specified in the setResult method will be used if the results
specification matches the parameters of the constructor by position and type. If more than one
constructor satisfies the requirements, the JDO implementation chooses one of them. If no
constructor satisfies the results requirements, or if the result class is specified via the setResu

 method, the following requirements apply:ltClass
A user-defined result class must have a no-args constructor and one or more public
“set” or “put” methods or fields.
Each result expression must match one of:

a public field that matches the name of the result expression and is of the type
(treating wrapper types the same as primitive types) of the result expression;
or if no public field matches the name and type, a public “set” method that
returns and matches the name of the result expression and takes a single void
parameter which is the exact type of the result expression;
or if neither of the above applies, a public method must be found with the
signature in which the first argument is the void put(Object, Object)
name of the result expression and the second argument is the value from the
query result.

Portable result classes do not invoke any persistence behavior during their no-args
constructor or set methods.

valid,
result
class is
String:
SELECT
stringNull
INTO String
FROM mylib.
PrimitiveTyp
es
TBD for all
supported
JDK classes.

resu
lt.
Resu
ltCl
assR
equi
reme
nts

Posi
tive
and
neg
ative
test.
New
resul
t
clas
s
requ
ired.

valid, result class is TCK class:
 SELECT stringNull AS s, intNotNull AS i INTO ...

 StringIntResult FROM mylib.PrimitiveTypes

 invalid, result class is TCK class not having Long property:
 SELECT stringNull AS s, longNotNull AS l INTO ...

 StringIntResult FROM mylib.PrimitiveTypes

invalid, result class is JDK class:
 SELECT stringNull, intNotNull INTO String FROM mylib.

PrimitiveTypes

 invalid, result class is JDK class and not assignment
compatible:

 SELECT stringNull INTO Integer FROM mylib.PrimitiveTypes

 invalid, result class is TCK class and not assignment
compatible:

 SELECT longNotNull AS s INTO ...StringIntResult FROM mylib.
PrimitiveTypes

valid, specifying a constructor:
 SELECT new (stringNull, intNotNull)StringIntResult FROM

mylib.PrimitiveTypes

 valid, specifying a non-existent constructor with AS:
 SELECT new (stringNull AS s)StringIntResult FROM mylib.

PrimitiveTypes

 invalid, specifying a non-existent constructor without AS:
 SELECT new (stringNull)StringIntResult FROM mylib.

PrimitiveTypes

 invalid, result class is TCK class not having an no-arg
constructor:

 SELECT stringNull INTO ...NoArgConstructor FROM mylib.
PrimitiveTypes

 invalid, result class is TCK class not having public fields
and methods:

 SELECT stringNull INTO ...NoFieldsNoMethods FROM mylib.
PrimitiveTypes

 valid, result class is TCK class having public fields and
set methods:

 SELECT stringNull AS s INTO ...FieldsAndSetMethods FROM
mylib.PrimitiveTypes

 valid, result class is TCK class having public fields and a
put method:

 SELECT stringNull AS s INTO ...FieldsAndPutMethod FROM mylib.
PrimitiveTypes

 valid, result class is TCK class having put method:
 SELECT stringNull AS s INTO ...PutMethod FROM mylib.

PrimitiveTypes

 Table 6: Shape of Result (C is the candidate class)A14.6.12-2: valid:
SELECT FROM company.Person

result.
ShapeOfResult

Positi
ve
test.

valid, this as C:
 SELECT this AS Person FROM company.Person

valid, unique:
 SELECT UNIQUE FROM company.Person WHERE firstname ==

'emp1First'

valid, unique, this as C:
 SELECT UNIQUE this AS Person FROM company.Person WHERE

firstname == 'emp1First'

#
#
#

valid, firstname:
 SELECT firstname FROM company.Person

valid, unique, firstname:
 SELECT UNIQUE firstname FROM company.Person WHERE firstname

== 'emp1First'

valid, firstname, lastname:
 SELECT firstname, lastname FROM company.Person

valid, unique, firstname, lastname:
 SELECT UNIQUE firstname, lastname FROM company.Person WHERE

firstname == 'emp1First'

valid, JDK result class, firstname:
 SELECT firstname INTO String FROM company.Person

valid, unique, JDK result class, firstname:
 SELECT UNIQUE firstname INTO String FROM company.Person WHERE

firstname == 'emp1First'

valid, TCK result class:
 SELECT INTO ...PersonResult FROM company.Person

valid, unique, TCK result class:
 SELECT UNIQUE INTO ...PersonResult FROM company.Person WHERE

firstname == 'emp1First'

valid, TCK result class, firstname:
 SELECT firstname INTO ...FullName FROM company.Person

valid, unique, TCK result class, firstname:
 SELECT UNIQUE firstname INTO ...FullName FROM company.Person

WHERE firstname == 'emp1First'

 valid, TCK result class, firstname, lastname:
 SELECT firstname, lastname INTO ...FullName FROM company.

Person

 valid, unique, TCK result class, firstname, lastname:
 SELECT UNIQUE firstname, lastname INTO ...FullName FROM

 company.Person WHERE firstname == 'emp1First'

SQL Queries

Assertion JDOQL Testclass Comment

A14.7-1: In this case, the factory method that takes the language string and Object is used: newQuery (String
. The language parameter is and the query parameter is the SQL language, Object query) javax.jdo.query.SQL

query string.

SELECT PERSONID
FROM persons

sql.
NewQuery

Positive test.

 The only methods that can be used are to establish the candidate class, to declare that there A14.7-2: setClass setUnique
is only one result row, and to establish the result class.setResultClass

setClass:
SELECT PERSONID
FROM persons

sql.
Allowed
APIMeth
ods

Positive and
negative test.
New result class
required.

setUnique(true):
 SELECT PERSONID FROM persons WHERE FIRSTNAME = 'emp1First'

setResultClass(...FullName):
 SELECT FIRSTNAME AS firstName, lastname AS lastName FROM persons

invalid:
for all other query api methods

parameter binding:
 SELECT PERSONID FROM persons WHERE FIRSTNAME = ?

 SQL queries can be defined without a candidate class. These queries can be found by name using the factory A14.7-3:
method , specifying the class as , or can be constructed without a candidate class.newNamedQuery null

named query:
SELECT PERSONID
FROM persons

sql.
Candida
teClass

Positive test.
Add JDO metadata
for named SQL
queries.

non-named query:
SELECT PERSONID from persons

 Table 7: Shape of Result of SQL QueryA14.7-4: valid, candidate
class, unique is
false:
SELECT PERSONID
FROM persons

sql.
ShapeOf
Result

Positive test and
negative test.

valid, candidate class, unique is true:
 SELECT PERSONID FROM persons WHERE FIRSTNAME = 'emp1First'

invalid, candidate class, unique is true:
SELECT PERSONID FROM persons

valid, single column, unique is false:
SELECT FIRSTNAME FROM persons

valid, multiple columns, unique is false:
SELECT FIRSTNAME, LASTNAME FROM persons

valid, multiple columns, unique is true:
 SELECT FIRSTNAME, LASTNAME FROM persons WHERE FIRSTNAME = 'emp1First'

 valid, candidate class, result class, unique is false:
 SELECT FIRSTNAME AS firstName, LASTNAME AS lastName FROM persons

 valid, candidate class, result class, unique is true:
 SELECT FIRSTNAME AS firstName, LASTNAME AS lastName FROM persons WHERE FIRSTNAME = 'emp1First'

 valid, result class, unique is false:
 SELECT FIRSTNAME AS firstName, LASTNAME AS lastName FROM persons

 valid, result class, unique is true:
 SELECT FIRSTNAME AS firstName, LASTNAME AS lastName FROM persons WHERE FIRSTNAME = 'emp1First'

 valid, result class (binding using put method), unique is false:
SELECT FIRSTNAME, LASTNAME FROM persons

 valid, result class (binding using put method), unique is true:
 SELECT FIRSTNAME, LASTNAME FROM persons WHERE FIRSTNAME = 'emp1First'

Deletion by Query

Assertion JDOQL Te
st
cl
ass

C
o
m
m
ent

 These methods delete the instances of affected classes that pass the filter, and all dependent instances. Affected classes are the A14.8-1:
candidate class and its persistence-capable subclasses.

SELECT * FROM company.
Person

de
le
te.

De
le
te
Pe
rs
is
te
nt
All

Po
siti
ve
te
st.

 The number of instances of affected classes that were deleted is returned. Embedded instances and dependent instances are not A14.8-2:
counted in the return value.

SELECT * FROM company.
Person

de
le
te.

No
Of
De
le
te
dI
ns
ta
nc

 es

Po
siti
ve
te
st.

 Query elements , , , , and are valid in queries used for delete. Elements , A14.8-3: filter parameters imports variables unique result
, , , and are invalid. If any of these elements is set to its non-default value when one of the result class range grouping ordering dele

 methods is called, a is thrown and no instances are deleted.tePersistentAll JDOUserException

valid:
SELECT UNIQUE FROM company.

 FullTimeEmployee WHERE
 salary > 1000 & projects.

 contains(project) & project.
 budget > limit VARIABLES

 Project project PARAMETERS B
 limitigDecimal

de
le
te.

De
le
te
Qu
er
yE
le
me
nts

Po
siti
ve
an
d
ne
ga
tiv
e
te
st.
N
e
w
re
su
lt
cl
as
s
re
qu
ire
d.

invalid result:
 SELECT firstname AS firstName INTO ...FullName FROM company.FullTimeEmployee

invalid order by:
 SELECT FROM company.FullTimeEmployee ORDER BY salary

invalid group by:
 SELECT FROM company.FullTimeEmployee GROUP BY lastname

invalid having:
 SELECT FROM company.FullTimeEmployee GROUP BY lastname HAVING lastname.startsWith('R')

invalid range:
 SELECT FROM company.FullTimeEmployee RANGE 1 TO 10

#
#

 Dirty instances of affected classes are first flushed to the datastore. Instances already in the cache when deleted via these methods A14.8-4:
or brought into the cache as a result of these methods undergo the life cycle transitions as if had been called on them. deletePersistent
That is, if an affected class implements the interface, the instances to be deleted are instantiated in memory and the DeleteCallback jdoP

 method is called prior to deleting the instance in the datastore. If any instances are registered with affected reDelete LifecycleListener
classes, these listeners are called for each deleted instance. Before returning control to the application, instances of affected classes in the
cache are refreshed by the implementation so their status in the cache reflects whether they were deleted from the datastore.

SELECT * FROM company.
Person

de
le
te.

De
le
te
Ca
ll
ba

 ck

Po
siti
ve
te
st.

Testcase Pattern

Positive test

A positive test expects that the query compiles and executes w/o exception and returns the expected result:

 Query query = pm.newQuery();
 ...
 // define query
 Object results = query.execute(...);

 // check query result
 List expected = new ArrayList();
 expected.add(...);
 checkQueryResultWithoutOrder(assertion, results, expected);

Negative test

A negative test case uses an invalid JDOQL query and expects an exception to be thrown by compile or execute:

 try {
 Query query = pm.newQuery();
 ...
 // define query
 Object results = query.execute();
 fail(ASSERTION_FAILED, text);
 } catch (JDOException e) {
 if (debug) logger.debug("Caught expected " + e);
 }

	QueryTests

