
SocketHubAppender
Sends objects to a set remote a log servers, usually a .LoggingEvent SocketNode

Acts just like except that instead of connecting to a given remote log server, accepts connections from the remote SocketAppender SocketHubAppender
log servers as clients. It can accept more than one connection, and when a log event is handled, the event is sent to the set of currently connected remote
log servers. Implemented this way it does not require any update to the configuration file to send data to another remote log server. The remote log server
simple connects to the host and port the is running on.SocketHubAppender

However, given the nature of accepting connections on-the-fly, it cannot be guaranteed that all events will be received while the tcp connection is in
process. But once connected, it should behave the same as .SocketAppender

This implementation borrows heavily from the implementation as an example.SocketAppender

The has the following properties:SocketHubAppender

*If sent to a , remote logging is non-intrusive as far as the log event is concerned. In other words, the event will be logged with the same time SocketNode
stamp, org.apache.log4j.NDC, location info as if it were logged locally by the client.
*SocketHubAppenders do not use a layout. They ship a serialized object to the server side.LoggingEvent
*Remote logging uses the TCP protocol. Consequently, if the server is reachable, then log events will eventually arrive at the server.
*If no remote servers are attached, the logging requests are simply dropped.

 by the native TCP implementation. This means that if the link to server is slow but still faster than the rate of Logging events are automatically *buffered
(log) event production by the client, the client will not be affected by the slow network connection. However, if the network connection is slower then the
rate of event production, then the client can only progress at the network rate. In particular, if the network link to the the server is down, the client will be
blocked. On the other hand, if the network link is up, but the server is down, the client will not be blocked when making log requests but the log events will
be lost due to server unavailability.
*If the JVM hosting the exits before the is closed either explicitly or subsequent to garbage collection, then there SocketHubAppender SocketHubAppender
might be untransmitted data in the pipe which might be lost. This is a common problem on Windows based systems. To avoid lost data, it is usually
sufficient to close the either explicitly or by calling the shutdown method before exiting the application.SocketHubAppender

#
#
#
#
#
#
#

	SocketHubAppender

