
GeoffLongmanSandbox
NOTE: This is outdated information that applies only to Tapestry
4.

I think there is a bug in T4 that is going to rear it's ugly head at some point. (and since wiki's are great for formatting things I'm going to lay out my case
here and then point a JIRA issue to this page. Although JIRA will be the permanent record so I guess this will be an expanded discussion on the issue).

Depending on how a page is referenced in a link, Tapestry may or may not find the right page class. And, once it chooses the wrong page class, the app
will probably break and stay broken until the servlet container is restarted.

If a page spec explicity specifies a class there is no problem, the problem arises when Tapestry goes searching for the class

In fact it's worse than this. There could be the case where an app had two links, one in a form (not an HTML form!) that would cause Tapestry to find the
correct class and one that would not. When this is possible then the stability of the application is suspect because all depends on whether the first user
clicked the right link. If the first click by the first user was on the bad link, the whole app is broken until the servlet container is restarted.

Currently the uses a Hivemind chain to search for the page class. Passed into this chain is an instance of ComponentClassProvider ComponentClassProvi
 which contains:derContext

the page name
the INamespace for the page
the page specification

One member of the chain, , gets a list of packages, say , by checking a property in the NamespaceClassSearchComponentClassProvider com.myfoo
Namespace and then checks each package for a class with a fully qualified name of the package with the page name appended. If the
NamespaceClassSearchComponentClassProvider does not locate a class it falls to other members of the chain and in most cases the resulting class
would be .org.apache.tapestry.html.BasePage

The problem arises because the page name may be a path like

pages/MyPage

In the case above there is no problem, Tapestry would look for and probably find the class . However, Tapestry uses the com.myfoo.pages.MyPage
same page name to locate the page spec (if one exists) and looks in various places like:

/
/WEB-INF
/WEB-INF/servletname

and there are several valid ways to reference a page in these places and each way would result in Tapestry looking for the page class in a different place.
So there is the distinct possibility that Tapestry will find the page class intended by the developer and fall back to the BasePage. Hence the app might not
break or not depending on who clicked what first.

Example

the following appears in test.application

 <meta key="org.apache.tapestry.page-class-packages" value="com.myfoo"/>
 <page name="Page" specification-path="/WEB-INF/pages/MyPage.page"/>

and of course the files are located at

/WEB-INF/test.application
/WEB-INF/pages/MyPage.page

Sidenote: If a page is specless things can go wrong too. But, that's another story

The class I've created for this page is .com.myfoo.pages.MyPage

Immediately I see 3 ways to reference MyPage that will result in Tapestry sucessfully locating the specification and then go off looking for the page class:

http://tapestry.apache.org/tapestry4/tapestry/apidocs/org/apache/tapestry/pageload/ComponentClassProvider.html
http://tapestry.apache.org/tapestry4/tapestry/apidocs/org/apache/tapestry/pageload/ComponentClassProvider.html
http://tapestry.apache.org/tapestry4/tapestry/apidocs/org/apache/tapestry/pageload/ComponentClassProvider.html
http://tapestry.apache.org/tapestry4/tapestry/apidocs/org/apache/tapestry/pageload/NamespaceClassSearchComponentClassProvider.html

Some of them links might not be pretty, but all are valid. We know that our class is and that the name used by com.myfoo.pages.MyPage
NamespaceClassSearchComponentClassProvider searched for will be, for each link, respectively:

com.myfoo.Page
com.myfoo.pages.MyPage
com.myfoo.WEB-INF.pages.MyPage

HowardLewisShip: The third option is something I've never considered and would consider banning outright. Also, I believe that page "Page" and page
"pages/MyPage" are *distinct* pages, because they have distinct page names ("Page" vs. "pages/MyPage"). The expectation is that page "Page" will be
class "com.myfoo.Page" and page "pages/MyPage" will be class "com.myfoo.pages.MyPage".

In all cases but the second, the page class Tapestry is searching for is not found and usually BasePage ends up being used. And if com.myfoo.pages.
 has some properties that are refenced by an OGNL expression in the template, the page will break.MyPage

I think this problem also, in some cases, affects template lookup, but I have not delved into that.

The Fix

It seems to me that the way this can be fixed so that Tapestry always looks for and finds is to do a bit more processing on com.myfoo.pages.MyPage
the name passed in before handing things off to the PageClassProvider. In every case above, Tapestry sucessfully locates the specification /WEB-INF

. I think the fix would be to examine the path part of the page name and lop off the leading parts that would cause the class lookup /pages/MyPage.page
to fail.

In particular I think that the locations Tapestry uses to find undeclared pages is a good place to start.
*Compare with the location of the namespace specification, if that is a prefix of the page name path, lop it off and .STOP
*Compare with , if that is a prefix, lop it off and ./WEB-INF/servletname STOP
*Compare with , if that is a prefix, lop it off and ./WEB-INF STOP
*If the above didn't result in a lopping, then the path is good.

HowardLewisShip: Still digesting this.

There would appear to be a special case. That is

But it is not a special case, the lopping happens the specification has been resolved and thus the declared name does not come into the picture.after

And I think that is a good thing. The declared name is much more likely to change than the name of the
specification.

but what about Specless pages? There is no spec! Well, really there is a spec. It's just that Tapestry create a spec and that spec is given a stand-in
location that can be used in the lopping too. Interestingly, the name given to the stand-in spec is the name in the path, so if one were to reference a
specless page thus:

and Tapestry would go looking for , which is what I think users would expect.com.myfoo.pages.MySpeclessPage

There is a catch to that though, the location given to the stand-in spec is relative to the location of the namespace. In the example above our specless
page's stand-in would have a location of

/WEB-INF/pages/MySpeclessPage.page

Which looks good, if we take the lopping appraoch, the stand-in's location will work fine too.

Implementing the Fix

I'm about 1/2 way through the fix. Since the lopping described above so closely parallels the logic in and since it it true that PageSpecificationResolverImpl
once a page class has been found for a page there is no way to change it short of restarting the container, I think the whole kit and kaboodle should be
moved out of PageLoader and into PageSpecificationResolverImpl.

Out of time for today, will pick this up again tomorrow night

last note. I have an example application that displays the broken behaviour I have described.

http://static.flickr.com/29/54487210_e699a93095.jpg

https://cwiki.apache.org/confluence/display/TAPESTRY5/HowardLewisShip
https://cwiki.apache.org/confluence/display/TAPESTRY5/HowardLewisShip
http://jakarta.apache.org/tapestry/tapestry/apidocs/org/apache/tapestry/resolver/PageSpecificationResolverImpl.html
http://static.flickr.com/29/54487210_e699a93095.jpg

	GeoffLongmanSandbox

