
SimplifiedSpecificationsProposal
NOTE: This information only applies to Tapestry 3. Current versions do not require page and component specifications. See http://tapestry.apache.org

./component-templates.html

Problem Description
Tapestry page and component specifications are still too verbose. Tapestry 3.0 allowed much of the content of specifications to be moved into the HTML
template, in the form of implicit components. However, implicit components are primarily used by beginners just learning Tapestry, or in isolated cases
(trivial component references). In most real Tapestry applications, the separation of concerns mandated by Tapestry 2.3 and earlier (which did not have
implicit components) is maintained, and the specifications continue to be quite verbose.

Proposed Solution
The 3.1 DTD will be a simplification of the 3.0 DTD. This will affect several different areas. The goal is to reduce the size of specifications, to rationalize
naming, and to improve consistency.

Note that it is required that Tapestry 3.0 DTDs be fully supported in Tapestry 3.1. This be extended to Tapestry 2.3 DTDs as well.expressly may

<binding> and prefixes

In HTML templates, a prefix system is used to differentiate the different types of bindings:

HTML prefix *3.0 specification equivalent

ognl: <binding>

message: <message-binding

no prefix <static-binding>

This discord has been confusing for new users of Tapestry (those who came on in 3.0). Even for experienced Tapestry developers (myself included), it is
common to make mistakes ... either using the wrong attribute (value instead of expression) or including a prefix in the specification.

For Tapestry 3.1, the three binding elements will be collapsed down to a single element, :<binding>

<binding name="..." value="..."/>

OR

<binding name="...">
 ...
</binding>

The value will be interpreted just as Tapestry 3.0 interprets HTML template attributes; an prefix will indicate an expression, thus:ognl:

<component id="inputName" type="ValidField">
 <binding name="displayName" value="message:name-label"/>
 <binding name="value" value="ognl:name"/>
 <binding name="validator" value="bean:nameValidator"/>
</component>

<component id="loop" type="Foreach">
 <binding name="source" value="ognl:items"/>
 <binding name="value" value="ognl:item"/>
 <binding name="element" value="tr"/>
 <binding name="index" value="ognl:index"/>
 <binding name="class">
 ognl:

 index % 2 == 0 ? "even" : "odd"
 </binding>
</component>

http://tapestry.apache.org/component-templates.html
http://tapestry.apache.org/component-templates.html

This example demonstrates the use of prefixes, including a proposed prefix for a new type of binding for accessing (equivalent to the bean: JavaBeans be
 property. Once the basic mechanism for supporting prefixes is in place, it will be extremely easy to add new prefixes ... even application-specific ans

prefixes.

The example also shows a long format binding, (), is represented.class

<inherited-binding>

In Tapestry 3.1, all component parameters will have a connected parameter property (see the). This will eliminate the ComponentParametersProposal
need for the element.<inherited-binding>

<bean> and <set-property>

The element is used to define a managed within a page or component ("managed bean" is an improved term over the one used in <bean> JavaBean
existing documentation, "helper bean").

Beans typically will require some configuration. Today, that configuration is only allowed as OGNL expressions, via the element.<set-property>

For 3.1, the element will be replaced with a simpler element, that operates in the same way as a element, i.e.:<set-property> <set> <binding>

<bean name="stringValidator">
 <set property="required" value="true"/>
 <set property="clientScriptingEnabled">
 ognl:clientScriptingEnabled
 </set>
</bean>

<external-asset>, <context-asset>, <private-asset>

As with , a prefix system will be instituted.<binding>

*3.0 element_' prefix

<context-asset> context:

<external-asset> http:, https:, ftp:

<private-asset> private:

No prefix will indicate a relative path. Some of the semantics need to be worked out (basically, private assets should be relative to the specification file,
and context assets should be relative to the web context directory). Generally, the prefix will be omitted for context assets.

Example usage:

 <asset name="stylesheet" path="context:styles/standard.css"/>
 <asset name="icon" path="images/page-icon.png"/>

It will be possible to define additional prefixes for external assets via a configuration.HiveMind

<property> vs. <property-specification>

The Tapestry 3.0 element is used to define meta-data. This element is very infrequently used. It will be renamed to .<property> <meta>

The Tapestry 3.0 element is used to define a new property on a page or component. It is used very frequently and will be <property-specification>
renamed to .<property>

<property[-specification]> simplifications

The Tapestry 3.0 element has a number of problems:<property-specification>

It violates the principal, since the Java type for the property is often in the specification and in the Java class (as abstract DontRepeatYourself
accessor methods)
It requires a Java to be specified, even when the type is irrelevant (such as when a property is only accessed via OGNL, which is typeless)type
It must be specified, even for transient properties that are fully defined in the Java class as abstract accessor methods.

#
#
#
https://cwiki.apache.org/confluence/display/TAPESTRY5/HiveMind
#

In 3.1 the element will be used to augment the information provided in the Java class.<property>

Any abstract accessor method in the Java class will result in a concrete property in the fabricated subclass. This will eliminate the need for most
 elements.<property>

The attribute can be omitted. If a value is specified, it must match the actual type defined by the Java class. If the Java class does not provide type
abstract accessors, then will simply default to .type java.lang.Object

Note: Which makes me wonder if type is_ ever'' useful?

A element will still be required for any persistent properties. Again, will typically be omitted here.<property> type

Discussion
HowardLewisShip: An outstanding question for me is how to handle and in the application specification. I believe all services <extension> <service>
will be specified as services contributed into a configuration point. Extensions are also somewhat irrelevant in the scheme of things. HiveMind HiveMind
Also, perhaps we can remove the element from , since it will now be very, very rare to subclass .engine-class <application> BaseEngine

In addition, I have thought of abandoning having a DTD in 3.1, which would allow an alternate format for bindings, which somewhat resembles Ant:

<component id="inputName" type="ValidField">
 <displayName value="message:name-label"/>
 <value value="ognl:name"/>
 <validator value="bean:nameValidator"/>
</component>

<component id="loop" type="Foreach">
 <source value="ognl:items"/>
 <value value="ognl:item"/>
 <element value="tr"/>
 <index value="ognl:index"/>
 <class>
 ognl:

 index % 2 == 0 ? "even" : "odd"
 </class>
</component>

That is, inside a element, each element identifies a parameter of the component to bind. Saves a small amount of typing. Abandoning the <component>
DTD will allow other changes, such as changing to and to . That is, <page-specification> <page> <component-specification> <component>
we have much more freedom to interpret elements based on context (as a root element is different than as a child element).<component> <component>

Status

The work on <binding> has taken place (including removal of <static-binding>, <message-binding> and <inherited-binding>).

<service> has been removed. A warning has been added for use of <service> in a 3.0 DTD specification.

Geoff threatened to kill me if I eliminated the DTD entirely. This was not unexpected.

https://cwiki.apache.org/confluence/display/TAPESTRY5/HowardLewisShip
https://cwiki.apache.org/confluence/display/TAPESTRY5/HiveMind
https://cwiki.apache.org/confluence/display/TAPESTRY5/HiveMind

	SimplifiedSpecificationsProposal

