
Tapestry4
NOTE: This is outdated information that applies only to Tapestry 
4.

Tapestry 4.0
Work on Tapestry 3.0 has  come to a close, and the focus is now on what comes next.finally

Hopefully, Tapestry 4.0 will not drag on for as long as Tapestry 3.0 (a year and a half!). More information is available on the  page.Tapestry31Status

Woops! Guess it did! – Howard

Tapestry is now using 's build system ... here are notes on .HiveMind BuildingTapestry

A number of ideas are floating around, rough areas in 3.0 (or even earlier) that need to be addressed.

Reworking Component Parameters
Component parameters are just not quite there. The idea of a component  just doesn't work out well. Users need too much of an understanding of direction
how components render to understand which direction works (i.e, can't use  if the parameter is accessed inside a component listener method). Then in
there are degenerate cases, such as an  parameter that is connected to a  parameter (in an enclosing component).auto in

Direction  is one step on the way. But it has limitations: the primitive types it can operate with are limited, and parameters must be required. In auto
addition, it can be less efficient that , because it will evaluate an  expression inside the fabricated accessor method .in OGNL every time

What's needed is to improve direction  with a notion of caching: how long can it cache the data if it has already retrieved it? I think likely options are auto no
, ,  or .  means only as long as the component itself is rendering (or any components it encloses), that is, until -cache render page-render request render

the end of the component's  method.  means until the current page finishes rendering.  means until the end renderComponent() page-render request
of the current request cycle.

Components may need to know whether they are currently rendering or not ... when invoked by a listener method,  or  don't make render page-render
sense.

I would think that  is the best default for a component parameter cache.render

Update: Parameters have been  and are better and more efficient than ever. Parameter direction is gone. There isn't a choice in terms of caching, its fixed
the equivalent of  above, and I think that is more than sufficient.render

Modularized Applications
Tapestry 3.0 expects all Tapestry pages and components in the application to be within a single directory. This causes some scalability problems ... when 
your application has dozens or hundreds of pages, its not good to have them all in a single directory.

Further, it leads to a basic incompatibility with J2EE , which is based on mapping paths (effectively, folders) to different security zones.DeclarativeSecurity

It will take a lot of work to address this; not just in terms of how pages are named, but even more so in terms of how URLs are constructed and parsed.

On top of this is the desire to maintain WYSIWYG preview ... this will likely entail having the Shell component render a <base> tag.

Update: This has started, and page names can now have one or more folder names, i.e., . This would locate a page admin/threads/ThreadAdmin
specification as  and an HTML template in the same folder, or as /WEB-INF/admin/threads/ThreadAdmin.page /admin/threads/ThreadAdmin.

. The Shell component now renders a <base> tag.html

Improved Testing Story
Testing Tapestry pages and components is too hard. Because the classes are often abstract, it isn't easy to instantiate them for testing purposes.

Tapestry has a fairly good test suite that needs to be : documented, improved, stabilized.productized

Update: The Creator can instantiate abstract components, a  1.1-alpha supports mocked classes via the  class extension. So unit HiveMind EasyMock
testing pages and components, and even the integration of different pages and components is feasible (and widely used inside Tapestry's own tests). 
However, providing a good, efficient,  test framework would still be a huge boon ... the start of one is there, but I've switched gears to use integration EasyM

 instead.ock

HiveMind Integration

https://cwiki.apache.org/confluence/display/TAPESTRY5/Tapestry31Status
https://cwiki.apache.org/confluence/display/TAPESTRY5/HiveMind
https://cwiki.apache.org/confluence/display/TAPESTRY5/BuildingTapestry
#
#
https://cwiki.apache.org/confluence/display/TAPESTRY5/HiveMind
#
#
#
https://cwiki.apache.org/confluence/display/TAPESTRY5/HiveMind


The DTD will be extended to make it easy to access  objects, using <inject> to inject services, configuration or whatever into pages and HiveMind
components as read-only properties. The <extension> and <service> elements will be deprecated.

Update: Yep, that's in there, and works great.

Offline Content Generation (4.1?)
This has come up ... the idea of using Tapestry to generate  web pages. This is a technique used by many high-volume web sites ... much of the static
content is neither fully dynamic nor personalized. It changes at fixed intervals and might as well be a static web page that is auto-magically updated. An 
alternative is to use your preferred http server's error handling mechanism to ask your app server to generate the static page (when possible): if the page 
is here, ok the http server serves it, otherwise it redirects the request to your app server (which in turn saves the final response). If you want to update, 
delete the static files. ...

Portlet Support
Supporting porlets in Tapestry 4.0 is gaining an ever higher priority.

https://cwiki.apache.org/confluence/display/TAPESTRY5/HiveMind

	Tapestry4

