
HttpClientConfiguration
HttpClient configuration and prefernece API

HttpClient customization

HttpClient instances can be created either using or factory methods of the utility class.HttpClientBuilder HttpClients

This code snippet shows how to create instance with default configuration. The instance will be configured to use a pool of connections with HttpClient
maximum two concurrent connections for the same route (host).

CloseableHttpClient client = HttpClients.createDefault();

This code snippet shows how to create an instance based on system properties. The instance will be configured to use a pool of connections. HttpClient
The following system properties will be taken into account:

ssl.TrustManagerFactory.algorithm
javax.net.ssl.trustStoreType
javax.net.ssl.trustStore
javax.net.ssl.trustStoreProvider
javax.net.ssl.trustStorePassword
java.home
ssl.KeyManagerFactory.algorithm
javax.net.ssl.keyStoreType
javax.net.ssl.keyStore
javax.net.ssl.keyStoreProvider
javax.net.ssl.keyStorePassword
http.proxyHost
http.proxyPort
http.nonProxyHosts
http.keepAlive
http.maxConnections
http.agent

CloseableHttpClient client = HttpClients.createSystem();

This code snippet shows how to create an instance with a minimal configuration. This instance will be configured to use a pool of connections HttpClient
with maximum two concurrent connections for the same route (host). The only request level configuration parameters that the minimal takes into HttpClient
account are timeouts (socket, connect, and connection request). All other request parameters will have no effect on request execution.

CloseableHttpClient client = HttpClients.createMinimal();

Please note that instances created with or are immutable. Their configuration can no longer be altered.HttpClient HttpClientBuilder HttpClients

This code snippet shows how to create an instance with a custom configuration. One can disable certain protocol aspects such as automatic HttpClient
redirect handling to have them completely removed from the request execution chain and make request execution more efficient.

CloseableHttpClient httpclient = HttpClients.custom()
 .disableAutomaticRetries()
 .disableConnectionState()
 .disableContentCompression()
 .disableRedirectHandling()
 .useSystemProperties()
 .build();

One can choose to configure to use system properties and then explicitly override only specific aspects through custom configuration.HttpClient

CloseableHttpClient httpclient = HttpClients.custom()
 .useSystemProperties()
 .setProxy(new HttpHost("myproxy", 8080))
 .build();

https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
#
#
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
#
#
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient

Request configuration

This code snippet shows how to create custom request configuration.

RequestConfig defaultRequestConfig = RequestConfig.custom()
 .setSocketTimeout(5000)
 .setConnectTimeout(5000)
 .setConnectionRequestTimeout(5000)
 .setStaleConnectionCheckEnabled(true)
 .build();

Request configuration can either be set at the client level as defaults for all requests without explicit configuration or at the request level.

CloseableHttpClient httpclient = HttpClients.custom()
 .setDefaultRequestConfig(defaultRequestConfig)
 .build();

Please note that requests do not automatically inherit client level request configuration, if it overridden at the request level. Configuration defaults must be
explicitly copied.y

HttpGet httpget = new HttpGet("http://www.apache.org/");
RequestConfig requestConfig = RequestConfig.copy(defaultRequestConfig)
 .setProxy(new HttpHost("myotherproxy", 8080))
 .build();
httpget.setConfig(requestConfig);

Request execution context

HTTP protocol processors used internall by are state-less, that is, they maintain no conversational between individual HTTP exchanges. HttpClient
However, conversational state such as HTTP cookies or authentication details can be preserved in the execution context represented by HttpClientContext
class.

The execution context can be shared by multiple HTTP exchanges if they belong to the same logical HTTP session. The context can be set up with a
particular state prior to executing the HTTP session. The context will also be updated in the course of the session. The conversational state can be
examined and updated after each individual HTTP exchange.

Default settings and configuration at the client level will be automatically added to the execution context if not explicitly set in the context by the user.

https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient
#

CloseableHttpClient httpclient = HttpClients.custom()
 .setDefaultCookieStore(defaultCookieStore)
 .setDefaultCredentialsProvider(defaultCredentialsProvider)
 .setDefaultRequestConfig(defaultRequestConfig)
 .build();

HttpClientContext context = HttpClientContext.create();
context.setCookieStore(customCookieStore);
context.setCredentialsProvider(customCredentialsProvider);
context.setRequestConfig(customRequestConfig)

HttpGet httpget = new HttpGet("http://www.apache.org/");
CloseableHttpResponse response = httpclient.execute(httpget, context);
try {
 // Last executed request
 context.getRequest();
 // Execution route
 context.getHttpRoute();
 // Target auth state
 context.getTargetAuthState();
 // Proxy auth state
 context.getTargetAuthState();
 // Cookie origin
 context.getCookieOrigin();
 // Cookie spec used
 context.getCookieSpec();
 // User security token
 context.getUserToken();

} finally {
 response.close();
}

Connection management and configuration

This code snippet shows how to create a instance that keeps a pool of re-usable persistent connections. By default the HttpClientConnectionManager
connection manager will allow no more than 2 concurrent connections for the same route and no more than 20 connections in total.

PoolingHttpClientConnectionManager connManager = new PoolingHttpClientConnectionManager();

These limits can be customized if desired. One can also specify a different maximum limit specifically for a particular host.

connManager.setMaxTotal(100);
connManager.setDefaultMaxPerRoute(10);
connManager.setMaxPerRoute(new HttpRoute(new HttpHost("somehost", 80)), 20);

The class can apply different configuration parameters to network sockets and HTTP connections. Socket and PoolingHttpClientConnectionManager
connection configuration can be set as defaults or applied to a specific host.

This code snippet shows how to set socket configuration.

SocketConfig defaultSocketConfig = SocketConfig.custom()
 .setTcpNoDelay(true)
 .build();
SocketConfig socketConfig = SocketConfig.custom()
 .setTcpNoDelay(true)
 .setSoKeepAlive(true)
 .setSoReuseAddress(true)
 .build();

connManager.setDefaultSocketConfig(defaultSocketConfig);
connManager.setSocketConfig(new HttpHost("somehost", 80), socketConfig);

This code snippet shows how to set socket configuration.

#
#

MessageConstraints messageConstraints = MessageConstraints.custom()
 .setMaxHeaderCount(200)
 .setMaxLineLength(2000)
 .build();
ConnectionConfig defaultConnectionConfig = ConnectionConfig.custom()
 .setMessageConstraints(messageConstraints)
 .build();
ConnectionConfig connectionConfig = ConnectionConfig.custom()
 .setMessageConstraints(messageConstraints)
 .setMalformedInputAction(CodingErrorAction.IGNORE)
 .setUnmappableInputAction(CodingErrorAction.IGNORE)
 .setCharset(Consts.UTF_8)
 .build();
connManager.setDefaultConnectionConfig(defaultConnectionConfig);
connManager.setConnectionConfig(new HttpHost("somehost", 80), connectionConfig);

A custom connection factory can also be used to customize the process of initialization of outgoing HTTP connections. Beside standard connection
configuration parameters HTTP connection factory can control the size of input / output buffers as well as determine message parser / writer routines to be
employed by individual HTTP connections. Custom message parser / message writer are responsible for marshaling / un-marshaling of HTTP messages
transferred over the HTTP connection. There are situations when one may want to employ a more lenient parsing when dealing with broken or non-
compliant server side scripts.

HttpMessageParserFactory<HttpResponse> responseParserFactory = new DefaultHttpResponseParserFactory() {

 @Override
 public HttpMessageParser<HttpResponse> create(
 SessionInputBuffer buffer, MessageConstraints constraints) {
 LineParser lineParser = new BasicLineParser() {

 @Override
 public Header parseHeader(CharArrayBuffer buffer) {
 try {
 return super.parseHeader(buffer);
 } catch (ParseException ex) {
 return new BasicHeader(buffer.toString(), null);
 }
 }

 };
 return new DefaultHttpResponseParser(
 buffer, lineParser, DefaultHttpResponseFactory.INSTANCE, constraints) {

 @Override
 protected boolean reject(CharArrayBuffer line, int count) {
 // try to ignore all garbage preceding a status line infinitely
 return false;
 }

 };
 }

};
HttpMessageWriterFactory<HttpRequest> requestWriterFactory = new DefaultHttpRequestWriterFactory();
HttpConnectionFactory<SocketClientConnection> connFactory = new DefaultClientConnectionFactory(
 8 * 1024, requestWriterFactory, responseParserFactory);
PoolingHttpClientConnectionManager connManager = new PoolingHttpClientConnectionManager(connFactory);

Client HTTP connection objects when fully initialized can be bound to an arbitrary network socket. The process of network socket initialization, its
connection to a remote address and binding to a local one is controlled by a connection socket factory. It is generally recommended to provide a
connection socket factory for SSL connections with a custom configuration as generally security requirements tend to be application specific.

SSL context for secure connections can be created either based on system or application specific properties.

SSLContext sslcontext = SSLSocketFactory.createSystemSSLContext();

One can also choose a custom hostname verifier to customize the process of hostname verification.

X509HostnameVerifier hostnameVerifier = new BrowserCompatHostnameVerifier();

This code snippet shows how to create a registry of custom connection socket factories for supported protocol schemes.

Registry<ConnectionSocketFactory> socketFactoryRegistry = RegistryBuilder.<ConnectionSocketFactory>create()
 .register("http", PlainSocketFactory.INSTANCE)
 .register("https", new SSLSocketFactory(sslcontext, hostnameVerifier))
 .build();

One can use a custom DNS resolver to override the system DNS resolution.

DnsResolver dnsResolver = new SystemDefaultDnsResolver() {

 @Override
 public InetAddress[] resolve(final String host) throws UnknownHostException {
 if (host.equalsIgnoreCase("myhost")) {
 return new InetAddress[] { InetAddress.getByAddress(new byte[] {127, 0, 0, 1}) };
 } else {
 return super.resolve(host);
 }
 }

};

This code snippet shows how to put together a pooling with custom connection factory, socket factories and DNS resolverHttpClientConnectionManager

PoolingHttpClientConnectionManager connManager = new PoolingHttpClientConnectionManager(
 socketFactoryRegistry, connFactory, dnsResolver);
CloseableHttpClient httpclient = HttpClients.custom()
 .setConnectionManager(connManager)
 .build();

Custom connection socket factories can also be provided at the request level through a local execution context. This will cause to override the HttpClient
default socket initialization routines with those specified in the execution context.

HttpClientContext context = HttpClientContext.create();
context.setSocketFactoryRegistry(socketFactoryRegistry);

Please note that if a custom HTTP connection is kept alive after the request execution it may be pooled and re-used for execution of other requests.

#
https://cwiki.apache.org/confluence/display/HTTPCOMPONENTS/HttpClient

	HttpClientConfiguration

