
DistributedSearch
<!> Solr1.3

What is Distributed Search?
When an index becomes too large to fit on a single system, or when a single query takes too long to execute, an index can be split into multiple shards,
and Solr can query and merge results across those shards.

If single queries are currently fast enough and one simply wishes to expand the capacity (queries/sec) of the search system, then standard whole index
 should be used.replication

This page covers the non-SolrCloud approach to distributed search, valid for all versions 1.3 and later. was introduced in Solr 4.0 and has many SolrCloud
advancements that make distributed search easier. Please see the page for more information.SolrCloud

What is Distributed Search?
Distributed Searching
Distributed Searching Limitations

Distributed Deadlock
Distributed Indexing
Distributed Search Example

Distributed Searching
The presence of the parameter in a request will cause that request to be distributed across all shards in the list. The syntax of is host:portshards shards
/base_url[,host:port/base_url]* A sharded request will go to the standard request handler (not necessarily the original); this can be overridden via shards.qt
. Since it is possible to obtain numFound, maxScore and time per shard in a distributed search query. Use to enable this SOLR-3134 shards.info=true
feature. The parameter includes error information if available. (SolrCloud can handle this for you in a more transparent way).shards.tolerant=true

Currently, only query requests will be distributed. This includes requests to the standard request handler (and subclasses such as the dismax request
handler), and any other handler (org.apache.solr.handler.component.SearchHandler) using standard components that support distributed search.

The current components that support distributed search are

The Query component that returns documents matching a query
The Facet component, for facet.query and facet.field requests where facets are sorted by count (the default). Solr 1.4 and later also support
sorting by name. Distributed date faceting is supported since] and . See issue [SOLR-1709 Solr4.0 https://issues.apache.org/jira/browse/SOLR-

.1709
The Highlighting component
The Stats component
The Spell Check Component
The Terms Component
The Term Vector Component
The Debug component
The Grouping component (From and from version . Currently group.truncate and group.func are the only parameters that Solr3.5 Solr4.0
aren't supported for distributed searches.)

See also WritingDistributedSearchComponents

Distributed Searching Limitations
Documents must have a unique key and the unique key must be stored (stored="true" in schema.xml)
The unique key field must be unique across all shards. If docs with duplicate unique keys are encountered, Solr will make an attempt to return
valid results, but the behavior may be non-deterministic.
No distributed idf (see) (Also see http://wunderwood.org/most_casual_observer/2007/04/progressive_reranking.html https://issues.apache.org/jira

 for some new work on this feature.)/browse/SOLR-1632
Doesn't support – (see)Join https://issues.apache.org/jira/browse/LUCENE-3759
Doesn't support pivot facing – (see))https://wiki.apache.org/solr/HierarchicalFaceting#Pivot_Facets
The index could change between stages, e.g. a document that matched a query and was subsequently changed may no longer match but will still
be retrieved.
Makes it more inefficient to use a high "start" parameter. For example, if you request start=500000&rows=25 on an index with 500,000+ docs per
shard, this will currently result in 500,000 records getting sent over the network from the shard to the coordinating Solr instance. If you had a
single-shard index, in contrast, only 25 records would ever get sent over the network. (Granted, setting start this high is not something many
people need to do.)

Distributed Deadlock

https://cwiki.apache.org/confluence/display/SOLR/Solr1.3
https://cwiki.apache.org/confluence/display/SOLR/CollectionDistribution
https://cwiki.apache.org/confluence/display/SOLR/CollectionDistribution
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud
https://issues.apache.org/jira/browse/SOLR-3134
https://cwiki.apache.org/confluence/display/SOLR/Solr3.6
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://issues.apache.org/jira/browse/SOLR-1709
https://issues.apache.org/jira/browse/SOLR-1709
https://cwiki.apache.org/confluence/display/SOLR/Solr3.5
https://cwiki.apache.org/confluence/display/SOLR/Solr4.0
https://cwiki.apache.org/confluence/display/SOLR/WritingDistributedSearchComponents
http://wunderwood.org/most_casual_observer/2007/04/progressive_reranking.html
https://issues.apache.org/jira/browse/SOLR-1632
https://issues.apache.org/jira/browse/SOLR-1632
#
https://issues.apache.org/jira/browse/LUCENE-3759
https://wiki.apache.org/solr/HierarchicalFaceting#Pivot_Facets

Each shard may also serve top-level query requests and then make sub-requests to all of the other shards. In this configuration, care should be taken to
ensure that the max number of threads serving HTTP requests in the servlet container is greater than the possible number of requests from both top-level
clients and other shards (the solr example server is already configured correctly). If this is not the case, a distributed deadlock is possible.

Consider the simplest case of two shards, each with just a single thread to service HTTP requests. Both threads could receive a top-level request
concurrently, and make sub-requests to each other. Because there are no more remaining threads to service requests, the servlet containers will block the
incoming requests until the other pending requests are finished (but they won't finish since they are waiting for the sub-requests).

Distributed Indexing
It's up to the user to distribute documents across shards. The easiest method to determine what server a document should be indexed at is to use
something like .uniqueId.hashCode() % numServers

SolrCloud does implement distributed indexing and has various strategies available.

Distributed Search Example
For simple functionality testing, it's easiest to just set up two local Solr servers on different ports.

#make a copy
cd solr
cp -r example example7574

#change the port number
perl -pi -e s/8983/7574/g example7574/etc/jetty.xml example7574/exampledocs/post.sh

#in window 1, start up the server on port 8983
cd example
java -server -jar start.jar

#in window 2, start up the server on port 7574
cd example7574
java -server -jar start.jar

#in window 3, index some example documents to each server
cd example/exampledocs
./post.sh [a-m]*.xml
cd ../../example7574/exampledocs
./post.sh [n-z]*.xml

#now do a distributed search across both servers with your browser or curl
curl 'http://localhost:8983/solr/select?shards=localhost:8983/solr,localhost:7574/solr&indent=true&q=ipod+solr'

Again, see page for an example of a more current approach to distributed search.SolrCloud

https://cwiki.apache.org/confluence/display/SOLR/SolrCloud
https://cwiki.apache.org/confluence/display/SOLR/SolrCloud

	DistributedSearch

