
1.

2.

NFS Client How-To

NFS Client How-To
Last Updated: June 18, 2012

Table of Contents
 Adding NFS to the NuttX Configuration

 Mount Interface

 NFS Mount Command

 Configuring the NFS server (Ubuntu)

Adding NFS to the NuttX Configuration
The NFS client is easily added to your configuration: You simply need to add to your file. There are, however, a few CONFIG_NFS nuttx/.config
dependencies on other system settings:

First, there are things that you must configure in order to be able to use any file system:
. You must include support for mount points in the pseudo-file system.CONFIG_DISABLE_MOUNTPOINT=n

And there are several dependencies on the networking configuration. At a minimum, you need to have the following selections:
. General networking support.CONFIG_NET=y

. Support for UDP.CONFIG_NET_UDP=y

Mount Interface
A low-level, C-callable interface is provided to mount a file system. That interface is called and is mentioned in the and is mount() porting guide
prototyped in the header file :include/sys/mount.h

int mount(const char *source, const char *target, const char *filesystemtype, unsigned long mountflags,
const void *data);

: attaches the filesystem specified by the block device name into the root file system at the path specified by .Synopsis mount() source target

:Input Parameters

source. A null-terminated string providing the fill path to a block driver in the NuttX pseudo-file system.
target. The location in the NuttX pseudo-file system where the volume will be mounted.
filesystemtype. A string identifying the type of file system to use.
mountflags. Various flags that can be used to qualify how the file system is mounted.
data. Opaque data that is passed to the file system with the mount occurs.

 Zero is returned on success; -1 is returned on an error and is set appropriately:Returned Values errno

EACCES. A component of a path was not searchable or mounting a read-only filesystem was attempted without giving the flag.MS_RDONLY
EBUSY. is already mounted.source
EFAULT. One of the pointer arguments points outside the user address space.
EINVAL. had an invalid superblock.source
ENODEV. not configuredfilesystemtype
ENOENT. A pathname was empty or had a nonexistent component.
ENOMEM. Could not allocate a memory to copy filenames or data into.
ENOTBLK. is not a block devicesource

This same interface can be used to mount a remote, NFS file system using some special parameters. The NFS mount differs from the file system normal
mount in that: (1) there is no block driver for the NFS file system, and (2) special parameters must be passed as to describe the remote NFS server. data
Thus the following code snippet might represent how an NFS file system is mounted:

#include <sys/mount.h>
#include <nuttx/fs/nfs.h>

struct nfs_args data;
char *mountpoint;

ret = mount(NULL, mountpoint, string "nfs", 0, (FAR void *)&data);

NOTE that: (1) the block driver parameter is . The is smart enough to know that no block driver is needed with the NFS file system. (2) The NULL mount()
NFS file system is identified with the simple string "nfs" (3) A reference to is passed as an NFS-specific argument.struct nfs_args

NuttxPortingGuide.html#NxFileSystem

1.

2.

3.

The NFS-specific interface is described in the file . There you can see that is defined as:include/nuttx/fs/nfs.h struct nfs_args

struct nfs_args
{
 uint8_t addrlen; /* Length of address */
 uint8_t sotype; /* Socket type */
 uint8_t flags; /* Flags, determines if following are valid: */
 uint8_t timeo; /* Time value in deciseconds (with NFSMNT_TIMEO) */
 uint8_t retrans; /* Times to retry send (with NFSMNT_RETRANS) */
 uint16_t wsize; /* Write size in bytes (with NFSMNT_WSIZE) */
 uint16_t rsize; /* Read size in bytes (with NFSMNT_RSIZE) */
 uint16_t readdirsize; /* readdir size in bytes (with NFSMNT_READDIRSIZE) */
 char *path; /* Server's path of the directory being mount */
 struct sockaddr_storage addr; /* File server address (requires 32-bit alignment) */
};

NFS Mount Command
The also supports a command called that can be used to mount a remote file system via the NSH command line.NuttShell (NSH) nfsmount

Command Syntax:

nfsmount <server-address> <mount-point> <remote-path>

. The command mounts a network file system in the NuttX pseudo filesystem. The will use NFSv3 UDP protocol to mount Synopsis nfsmount nfsmount
the remote file system.

. The takes three arguments:Command Line Arguments nfsmount

The is the IP address of the server exporting the file system you wish to mount. This implementation of NFS for the NuttX <server-address>
RTOS is only for a local area network, so the server and client must be in the same network.
The is the location in the NuttX pseudo filesystem where the mounted volume will appear. This mount point can only reside in <mount-point >
the NuttX pseudo filesystem. By convention, this mount point is a subdirectory under . The mount command will create whatever pseudo /mnt
directories that may be needed to complete the full path (but the full path must not already exist).
The is the file system directory being exported from server. This directory must have been configured for exportation on the <remote-path> / /
server before when the NFS server was set up.

After the volume has been mounted in the NuttX pseudo filesystem, it may be access in the same way as other objects in the file system.

. Suppose that the NFS server has been configured to export the directory . The the following command would mount that file Example /export/shared
system (assuming that the target also has privileges to mount the file system).

NuttShell (NSH)
nsh> ls /mnt
/mnt:
nsh: ls: no such directory: /mnt
nsh> nfsmount 10.0.0.1 /mnt/nfs /export/shared
nsh> ls -l /mnt/nfs
/mnt/nfs:
 drwxrwxrwx 4096 ..
 drwxrwxrwx 4096 testdir/
 -rw-rw-rw- 6 ctest.txt
 -rw-r--r-- 15 btest.txt
 drwxrwxrwx 4096 .
nsh> echo "This is a test" >/mnt/nfs/testdir/testfile.txt
nsh> ls -l /mnt/nfs/testdir
/mnt/nfs/testdir:
 -rw-rw-rw- 21 another.txt
 drwxrwxrwx 4096 ..
 drwxrwxrwx 4096 .
 -rw-rw-rw- 16 testfile.txt
nsh> cat /mnt/nfs/testdir/testfile.txt
This is a test

Configuring the NFS server (Ubuntu)
Setting up the server will be done in two steps: First, setting up the configuration file for NFS, and then starting the NFS services. But first, you need to
install the nfs server on Ubuntu with these two commands:

sudo apt-get install nfs-common
sudo apt-get install nfs-kernel-server

After that, we need to make or choose the directory we want to export from the NFS server. In our case, we are going to make a new directory called /exp
.ort

NuttShell.html

sudo mkdir /export

It is important that directory allow access to everyone (777 permissions) as we will be accessing the NFS share from the client with no /export
authentication.

sudo chmod 777 /export

When all this is done, we will need to edit the configuration file to set up an NFS server: . This file contains a list of entries; each entry /etc/exports
indicates a volume that is shared and how it is shared. For more information for a complete description of all the setup options for this file you can check in
the man pages ().man export

An entry in will typically look like this:/etc/exports

directory machine1(option11,option12)

So for our example we export to the client 10.0.0.2 add the entry:/export

/export 10.0.0.2(rw)

In our case we are using all the default options except for the that we replaced with so that our client will have read and write access to the directory ro rw
that we are exporting.

After we do all the require configurations, we are ready to start the server with the next command:

sudo /etc/init.d/nfs-kernel-server start

Note: If you later decide to add more NFS exports to the /etc/exports file, you will need to either restart NFS daemon or run command exportfs.

sudo /etc/init.d/nfs-kernel-server start

Or

exportfs -ra

Now we can check if the export directory and our mount point is properly set up.

sudo showmount -e
sudo showmount -a

And also we can verify if NFS is running in the system with:

rpcinfo –p
program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100011 1 udp 749 rquotad
 100011 2 udp 749 rquotad
 100005 1 udp 759 mountd
 100005 1 tcp 761 mountd
 100005 2 udp 764 mountd
 100005 2 tcp 766 mountd
 100005 3 udp 769 mountd
 100005 3 tcp 771 mountd
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 300019 1 tcp 830 amd
 300019 1 udp 831 amd
 100024 1 udp 944 status
 100024 1 tcp 946 status
 100021 1 udp 1042 nlockmgr
 100021 3 udp 1042 nlockmgr
 100021 4 udp 1042 nlockmgr
 100021 1 tcp 1629 nlockmgr
 100021 3 tcp 1629 nlockmgr
 100021 4 tcp 1629 nlockmgr

Now your NFS sever is sharing directory to be accessed./export

	NFS Client How-To

