
1.
2.
3.

USB Device Trace

NuttX USB Device Trace
Last Updated: March 20, 2011

USB Device Tracing Controls. The NuttX USB device subsystem supports a fairly sophisticated tracing facility. The basic trace cabability is controlled by
these NuttX configuration settings:

CONFIG_USBDEV_TRACE: Enables USB tracing
CONFIG_USBDEV_TRACE_NRECORDS: Number of trace entries to remember

Trace IDs. The trace facility works like this: When enabled, USB events that occur in either the USB device driver or in the USB class driver are logged.
These events are described in . The logged events are identified by a set of event IDs:include/nuttx/usb/usbdev_trace.h

TRACE_INIT_ID Initialization events
TRACE_EP_ID Endpoint API calls
TRACE_DEV_ID USB device API calls
TRACE_CLASS_ID USB class driver API calls
TRACE_CLASSAPI_ID Other class driver system API calls
TRACE_CLASSSTATE_ID Track class driver state changes
TRACE_INTENTRY_ID Interrupt handler entry
TRACE_INTDECODE_ID Decoded interrupt event
TRACE_INTEXIT_ID Interrupt handler exit
TRACE_OUTREQQUEUED_IDRequest queued for OUT endpoint
TRACE_INREQQUEUED_ID Request queued for IN endpoint
TRACE_READ_ID Read (OUT) action
TRACE_WRITE_ID Write (IN) action
TRACE_COMPLETE_ID Request completed
TRACE_DEVERROR_ID USB controller driver error event
TRACE_CLSERROR_ID USB class driver error event

Logged Events. Each logged event is 32-bits in size and includes

8-bits of the trace ID (values associated with the above)
8-bits of additional trace ID data, and
16-bits of additional data.

8-bit Trace Data The 8-bit trace data depends on the specific event ID. As examples,

For the USB serial and mass storage class, the 8-bit event data is provided in .include/nuttx/usb/usbdev_trace.h
For the USB device driver, that 8-bit event data is provided within the USB device driver itself. So, for example, the 8-bit event data for the
LPC1768 USB device driver is found in .arch/arm/src/lpc17xx_40xx/lpc17_40_usbdev.c

16-bit Trace Data. The 16-bit trace data provided additional context data relevant to the specific logged event.

Trace Control Interfaces. Logging of each of these kinds events can be enabled or disabled using the interfaces described in include/nuttx/usb
./usbdev_trace.h

Enabling USB Device Tracing. USB device tracing will be configured if and either of the following are set in the NuttX configuration file:CONFIG_USBDEV

CONFIG_USBDEV_TRACE, or
CONFIG_DEBUG_FEATURES and CONFIG_DEBUG_USB

Log Data Sink. The logged data itself may go to either (1) an internal circular buffer, or (2) may be provided on the console. If is CONFIG_USBDEV_TRACE
defined, then the trace data will go to the circular buffer. The size of the circular buffer is determined by . Otherwise, CONFIG_USBDEV_TRACE_NRECORDS
the trace data goes to console.

Example. Here is an example of USB trace output using for an LPC1768 platform with the following NuttX configuration apps/examples/usbserial
settings:

CONFIG_DEBUG_FEATURES, , CONFIG_DEBUG_INFO CONFIG_USB
CONFIG_EXAMPLES_USBSERIAL_TRACEINIT, , CONFIG_EXAMPLES_USBSERIAL_TRACECLASS CONFIG_EXAMPLES_USBSERIAL_TRACETRAN

, , SFERS CONFIG_EXAMPLES_USBSERIAL_TRACECONTROLLER CONFIG_EXAMPLES_USBSERIAL_TRACEINTERRUPTS

Console Output:

 ABDE

 usbserial_main: Registering USB serial driver
 uart_register: Registering /dev/ttyUSB0
 usbserial_main: Successfully registered the serial driver
1 Class API call 1: 0000
2 Class error: 19:0000
 usbserial_main: ERROR: Failed to open /dev/ttyUSB0 for reading: 107
 usbserial_main: Not connected. Wait and try again.
3 Interrupt 1 entry: 0039
4 Interrupt decode 7: 0019
5 Interrupt decode 32: 0019
6 Interrupt decode 6: 0019
7 Class disconnect(): 0000
8 Device pullup(): 0001
9 Interrupt 1 exit: 0000

The numbered items are USB USB trace output. You can look in the file to see examctly how each output line drivers/usbdev/usbdev_trprintf.c
is formatted. Here is how each line should be interpreted:

 USB EVENT ID
8-bit

EVENT
DATA

MEANING
16-bit
EVENT
DATA

1 TRACE_CLASSAPI_ID1 1 USBSER_TRACECLASSAPI_SETUP1 0000

2 TRACE_CLSERROR_ID1 19 USBSER_TRACEERR_SETUPNOTCONNECTED1 0000

3 TRACE_INTENTRY_ID1 1 LPC17_40_TRACEINTID_USB2 0039

4 TRACE_INTDECODE_ID2 7 LPC17_40_TRACEINTID_DEVSTAT2 0019

5 TRACE_INTDECODE_ID2 32 LPC17_40_TRACEINTID_SUSPENDCHG2 0019

6 TRACE_INTDECODE_ID2 6 LPC17_40_TRACEINTID_DEVRESET2 0019

7 TRACE_CLASS_ID1 3 (See TRACE_CLASSDISCONNECT1) 0000

8 TRACE_DEV_ID1 6 (See TRACE_DEVPULLUP1) 0001

9 TRACE_INTEXIT_ID1 1 LPC17_40_TRACEINTID_USB2 0000

:NOTES
See 1 include/nuttx/usb/usbdev_trace.h

2See arch/arm/src/lpc17xx_40xx/lpc17_40_usbdev.c

In the above example you can see that:

1. The serial class USB setup method was called for the USB serial class. This is the corresponds to the following logic in drivers/usbdev
:/pl2303.c

static int pl2303_setup(FAR struct uart_dev_s *dev)
{
 ...
 usbtrace(PL2303_CLASSAPI_SETUP, 0);
 ...

2. An error occurred while processing the setup command because no configuration has yet been selected by the host. This corresponds to the
following logic in :drivers/usbdev/pl2303.c

static int pl2303_setup(FAR struct uart_dev_s *dev)
{
 ...
 /* Check if we have been configured */

 if (priv->config == PL2303_CONFIGIDNONE)
 {
 usbtrace(TRACE_CLSERROR(USBSER_TRACEERR_SETUPNOTCONNECTED), 0);
 return -ENOTCONN;
 }
 ...

3-6. Here is a USB interrupt that suspends and resets the device.
7-8. During the interrupt processing the serial class is disconnected
9. And the interrupt returns

USB Monitor. The is an application in the that provides a convenient way to get debug trace output. If tracing USB monitor apps/system/usbmonitor
is enabled, the USB device will save encoded trace output in in-memory buffer; if the USB monitor is also enabled, that trace buffer will be periodically
emptied and dumped to the system logging device (the serial console in most configurations). The following are some of the relevant configuration options:

Device Drivers -> USB Device Driver Support
CONFIG_USBDEV_TRACE=y Enable USB trace feature
CONFIG_USBDEV_TRACE_NRECORDS=nnnnBuffer records in memory. If you lose trace data, then you will need to increase the size of this nnnn

buffer (or increase the rate at which the trace buffer is emptied).

CONFIG_USBDEV_TRACE_STRINGS=y Optionally, convert trace ID numbers to strings. This feature may not be supported by all drivers.
Application Configuration -> NSH LIbrary
CONFIG_NSH_USBDEV_TRACE=n Make sure that any built-in tracing from NSH is disabled.
CONFIG_NSH_ARCHINIT=y Enable this option if your board-specific logic has logic to automatically start the USB monitor. only

Otherwise the USB monitor can be started or stopped with the and usbmon_start usbmon_stop
commands from the NSH console.

Application Configuration -> System NSH Add-Ons
CONFIG_USBMONITOR=y Enable the USB monitor daemon

 CONFIG_USBMONITOR_STACKSIZE=nnnn Sets the USB monitor daemon stack size to . The default is 2KiB.nnnn
CONFIG_USBMONITOR_PRIORITY=50 Sets the USB monitor daemon priority to . This priority should be low so that it does not interfere nnnn

with other operations, but not so low that you cannot dump the buffered USB data sufficiently rapidly.
The default is 50.

CONFIG_USBMONITOR_INTERVAL=nnnn Dump the buffered USB data every seconds. If you lose buffered USB trace data, then dropping nnnn
this value will help by increasing the rate at which the USB trace buffer is emptied.

CONFIG_USBMONITOR_TRACEINIT=y
CONFIG_USBMONITOR_TRACECLASS=y
CONFIG_USBMONITOR_TRACETRANSFERS
=y
CONFIG_USBMONITOR_TRACECONTROLLE
R=y
CONFIG_USBMONITOR_TRACEINTERRUPT
S=y

Selects which USB event(s) that you want to be traced.

NOTE: If USB debug output is also enabled, both outputs will appear on the serial console. However, the debug output will be asynchronous with the trace
output and, hence, difficult to interpret.

	USB Device Trace

