USB Device Trace

NuttX USB Device Trace

Last Updated: March 20, 2011

USB Device Tracing Controls. The NuttX USB device subsystem supports a fairly sophisticated tracing facility. The basic trace cabability is controlled by
these NuttX configuration settings:

® CONFI G_USBDEV_TRACE: Enables USB tracing
® CONFI G_USBDEV_TRACE_NRECORDS: Number of trace entries to remember

Trace IDs. The trace facility works like this: When enabled, USB events that occur in either the USB device driver or in the USB class driver are logged.
These events are described in i ncl ude/ nut t x/ usb/ usbdev_t r ace. h. The logged events are identified by a set of event IDs:

TRACE_INIT_ID Initialization events
TRACE_EP_I D Endpoint API calls
TRACE_DEV_I D USB device API calls
TRACE_CLASS I D USB class driver API calls

TRACE_CLASSAPI _I D Other class driver system API calls
TRACE_CLASSSTATE_| D Track class driver state changes

TRACE_I NTENTRY_I D Interrupt handler entry
TRACE_| NTDECODE_I D Decoded interrupt event
TRACE_I NTEXIT_I D Interrupt handler exit

TRACE_OUTREQQUEUED _| DRequest queued for OUT endpoint
TRACE_| NREQQUEUED | D Request queued for IN endpoint
TRACE_READ_| D Read (OUT) action

TRACE_WRI TE_I D Write (IN) action
TRACE_COWPLETE_I D Request completed
TRACE_DEVERROR_I D USB controller driver error event
TRACE_CLSERROR_I D USB class driver error event

Logged Events. Each logged event is 32-bits in size and includes
1. 8-bits of the trace ID (values associated with the above)
2. 8-bits of additional trace ID data, and
3. 16-bits of additional data.
8-bit Trace Data The 8-bit trace data depends on the specific event ID. As examples,
® For the USB serial and mass storage class, the 8-bit event data is provided in i ncl ude/ nut t x/ usb/ usbdev_trace. h.
® For the USB device driver, that 8-bit event data is provided within the USB device driver itself. So, for example, the 8-bit event data for the
LPC1768 USB device driver is found in ar ch/ armf src/ | pc17xx_40xx/ | pc17_40_usbdev. c.

16-bit Trace Data. The 16-bit trace data provided additional context data relevant to the specific logged event.

Trace Control Interfaces. Logging of each of these kinds events can be enabled or disabled using the interfaces described in i ncl ude/ nut t x/ usb
/usbdev_trace. h.

Enabling USB Device Tracing. USB device tracing will be configured if CONFI G_USBDEV and either of the following are set in the NuttX configuration file:

* CONFI G_USBDEV_TRACE, or
* CONFI G DEBUG FEATURES and CONFI G DEBUG USB

Log Data Sink. The logged data itself may go to either (1) an internal circular buffer, or (2) may be provided on the console. If CONFI G_USBDEV_TRACE is
defined, then the trace data will go to the circular buffer. The size of the circular buffer is determined by CONFI G_USBDEV_TRACE_NRECCORDS. Otherwise,
the trace data goes to console.

Example. Here is an example of USB trace output using apps/ exanpl es/ usbseri al for an LPC1768 platform with the following NuttX configuration
settings:

* CONFlI G_DEBUG_FEATURES, CONFI G_DEBUG | NFO, CONFI G_USB
® CONFI G_EXAMPLES_USBSERI AL_TRACEI NI T, CONFI G_EXAMPLES_USBSERI AL_ TRACECLASS, CONFI G_EXAMPLES_USBSERI AL_TRACETRAN
SFERS, CONFI G_EXAMPLES USBSERI AL_ TRACECONTROLLER, CONFI G_EXAMPLES USBSERI AL_TRACEI NTERRUPTS
Console Output:

ABDE

usbserial _main: Registering USB serial driver
uart_register: Registering /dev/ttyUSBO
usbserial _main: Successfully registered the serial driver
1C ass APl call 1: 0000
2C ass error: 19:0000
ushserial _main: ERROR Failed to open /dev/ttyUSBO for reading: 107
usbserial _main: Not connected. Wait and try again.
3interrupt 1 entry: 0039
41nterrupt decode 7: 0019
S5Interrupt decode 32: 0019
6l nterrupt decode 6: 0019
70 ass di sconnect (): 0000
8Device pul lup(): 0001
9lnterrupt 1 exit: 0000

The numbered items are USB USB trace output. You can look in the file dri ver s/ usbdev/ usbdev_t rprintf. c to see examctly how each output line
is formatted. Here is how each line should be interpreted:

8-hit 16-bit
USB EVENT ID EVENT MEANING EVENT

DATA DATA
1TRACE_CLASSAPI _| D! 1 USBSER_TRACECLASSAPI _SETUP! 0000
2 TRACE_CLSERROR | D! 19 USBSER_TRACEERR_SETUPNOTCONNECTED! 0000
3 TRACE_| NTENTRY_| D 1LPC17_40_TRACEI NTI D_USB? 0039
4 TRACE_| NTDECODE_| D? 7 LPC17_40_TRACEI NTI D_DEVSTAT? 0019
5 TRACE_| NTDECODE_| D? 32 LPC17_40_TRACEI NTI D_SUSPENDCHG? 0019
6 TRACE_| NTDECODE_| D? 6 LPC17_40_TRACEI NTI D_DEVRESET? 0019
7 TRACE_CLASS_| D 3(See TRACE CLASSDI SCONNECTY) 0000
8 TRACE_DEV_| D! 6 (See TRACE_DEVPULLUPY) 0001
9 TRACE_| NTEXI T_I D 1LPC17_40_TRACEI NTI D_USB? 0000

NOTES
1See i ncl ude/ nut t x/ ush/ ushdev_trace. h
2see arch/arm src/l pcl7xx_40xx/ | pcl7_40_usbdev. c

In the above example you can see that:

® 1. The serial class USB setup method was called for the USB serial class. This is the corresponds to the following logic in dri ver s/ usbdev
/ pl 2303. c:

static int pl2303_setup(FAR struct uart_dev_s *dev)
{

usbt r ace(PL2303_CLASSAPI _SETUP, 0);

® 2. An error occurred while processing the setup command because no configuration has yet been selected by the host. This corresponds to the
following logic in dri ver s/ usbdev/ pl 2303. c:

static int pl2303_setup(FAR struct uart_dev_s *dev)
{

}.*.Check if we have been configured */
if (priv->config == PL2303_CONFI G DNONE)
{

usbt r ace(TRACE_CLSERROR(USBSER_TRACEERR_SETUPNOTCONNECTED), 0);
return - ENOTCONN,

}

® 3-6. Here is a USB interrupt that suspends and resets the device.
® 7-8. During the interrupt processing the serial class is disconnected
® 9. And the interrupt returns

USB Monitor. The USB monitor is an application in the apps/ syst en? usbnoni t or that provides a convenient way to get debug trace output. If tracing
is enabled, the USB device will save encoded trace output in in-memory buffer; if the USB monitor is also enabled, that trace buffer will be periodically
emptied and dumped to the system logging device (the serial console in most configurations). The following are some of the relevant configuration options:

Device Drivers -> USB Device Driver Support
CONFI G_USBDEV_TRACE=Y Enable USB trace feature

CONFI G_USBDEV_TRACE_NRECORDS=nnnmBuffer nnnn records in memory. If you lose trace data, then you will need to increase the size of this
buffer (or increase the rate at which the trace buffer is emptied).

CONFI G_USBDEV_TRACE_STRI NGS=y Optionally, convert trace ID numbers to strings. This feature may not be supported by all drivers.

Application Configuration -> NSH Llbrary

CONFI G_NSH_USBDEV_TRACE=n Make sure that any built-in tracing from NSH is disabled.

CONFI G_NSH_ARCHI NI T=y Enable this option only if your board-specific logic has logic to automatically start the USB monitor.
Otherwise the USB monitor can be started or stopped with the usbnon_st art and usbnon_st op
commands from the NSH console.

Application Configuration -> System NSH Add-Ons

CONFI G_USBMONI TOR=y Enable the USB monitor daemon

CONFI G_USBMONI TOR_STACKSI ZE=nnnn Sets the USB monitor daemon stack size to nnnn. The default is 2KiB.

CONFI G_USBMONI TOR_PRI ORI TY=50 Sets the USB monitor daemon priority to nnnn. This priority should be low so that it does not interfere
with other operations, but not so low that you cannot dump the buffered USB data sufficiently rapidly.
The default is 50.

CONFI G_USBMONI TOR_I NTERVAL=nnnn Dump the buffered USB data every nnnn seconds. If you lose buffered USB trace data, then dropping
this value will help by increasing the rate at which the USB trace buffer is emptied.

CONFI G_USBMONI TOR_TRACEI NI T=y Selects which USB event(s) that you want to be traced.

CONFI G_USBMONI TOR_TRACECLASS=y

CONFI G_USBMONI TOR_TRACETRANSFERS

=y

CONFI G_USBMONI TOR_TRACECONTROLLE
Rey

CONFI G_USBMONI TOR_TRACEI NTERRUPT
S=y

NOTE: If USB debug output is also enabled, both outputs will appear on the serial console. However, the debug output will be asynchronous with the trace
output and, hence, difficult to interpret.

	USB Device Trace

