
WoodyBinding
The binding framework
Likely you will want to use Woody to "edit stuff", such as the properties of a bean or data from an XML document (we'll simply use the term object to refer
to either of these). This supposes that before you show the form, you copy the data from the object to the form, and after the form has been validated, you
copy the data in the form back to the object. To avoid having to write actual code for this, a binding framework is available. The basic definition of a binding
is as follows (if you don't know Java, just ignore this):

public interface Binding {
 public void loadFormFromModel(Widget frmModel, Object objModel);
 public void saveFormToModel(Widget frmModel, Object objModel);
}

A binding can work with any object and can perform the binding in any possible way. Currently one implementation is available, based on . JXPath JXPath
allows to address data in both beans and XML documents using , so this binding implementation can be used both with beans and XML XPath expressions
documents. The rest of this document will focus on this implementation.

The binding is configured using an XML file. This XML file contains elements in the namesspace (Woody Binding):wb

xmlns:wb="http://apache.org/cocoon/woody/binding/1.0"

What does a binding file look like?
To give you an idea of what a binding file looks like, below a very simple example is shown.

<wb:context xmlns:wb="http://apache.org/cocoon/woody/binding/1.0" path="/" >
 <wb:value id="firstname" path="firstName"/>
 <wb:value id="lastname" path="lastName"/>
 <wb:value id="email" path="email"/>
</wb:context>

The attribute identifies the . The attribute is the address of the items in the target object (a Javabean or an XML id WoodyWidgetReference path
document). The paths can be arbitrary JXPath expressions.

[Convention] Let's call all elements in the namespace "binding elements". They all cause a binding-related action to be performed.wb

The element changes the to the specified path. The path expressions on the binding elements occuring inside the context wb:context JXPath context
element will then be evaluated in this context, thus relative to the path specified on the wb:context element.

The element is used to bind the value of a widget.wb:value

The binding framework can do much more than what is shown in the simple example above, so read on for more meat.

Quick reference of supported binding elements
Element Description Attributes Child elements

wb:* common settings for all bindings direction not applicable, see specific elements

wb:context changes the JXPath context path any

wb:value binds the value of widgets id, path wb:on-update, wd:convertor

wb:aggregate binds aggregatefield widgets id, path wb:value

wb:repeater binds repeater widgets id, parent-path, row-path, unique-row-id (deprecated), unique-
path (deprecated)

wd:convertor (deprecated), wb:on-bind, wb:on-delete-row, wb:on-insert-
row, wb:unique-row

wb:unique-row specifies unique fields for a
repeater row

none wb:unique-field

wb:unique-
field

specifies unique field for a
repeater row

id, path wd:convertor

wb:set-
attribute

sets an attribute to a fixed value name, value none

wb:delete-
node

deletes the current context node none none

wb:insert-node insert a node in an XML document src, xpath piece of XML that should be inserted

http://jakarta.apache.org/commons/jxpath/index.html
http://www.w3.org/TR/xpath
https://cwiki.apache.org/confluence/display/COCOON/WoodyWidgetReference
http://jakarta.apache.org/commons/jxpath/apidocs/org/apache/commons/jxpath/JXPathContext.html

wb:insert-bean inserts an object in a list-type
bean property

classname, addmethod none

wb:simple-
repeater

binds repeater widgets id, parent-path,row-path, clear-before-load, delete-parent-if-
empty

any

wb:javascript write binding logic in Javascript id, path wb:load-form, wb:save-form

wb:custom write binding logic in Java id, path, class, builderclass,factorymethod wb:config

Detailed reference of binding elements

wb:*/@direction

All Bindings share the ability to have the two distinct actions they provide (i.e. load and save) been enabled or disabled by setting the attribute direction to
one of the following values:

value load active? save active?

both(default) yes yes

load yes no

save no yes

The default value 'both' for this attribute makes its use optional.

NOTE: this setting replaces the @readonly attribute that was available only on selected bindings.

wb:context

Attributes:

path
direction (optional)

Child elements: any

The element changes the JXPath context to the specified path. The path expressions on the binding elements occuring inside the context wb:context
element will then be evaluated in this context, thus relative to the path specified on the element.wb:context

The element is usually used in two occasions. First of all, it is used as the root element of the binding file; because an XML file must always wb:context
have one root element, and you will usually want to perform more than one binding action.

Secondly, you use if you need to address multiple items having a common base path. On the one hand, this saves you on typing and helps wb:context
readability, and on the other hand, this improves the performance of the binding. To illustrate this with an example, instead of doing this:

...
<wb:value id="firstname" path="info/person/firstName"/>
<wb:value id="lastname" path="info/person/lastName"/>
...

it is better to do this:

...
<wb:context path="info/person">
 <wb:value id="firstname" path="firstName"/>
 <wb:value id="lastname" path="lastName"/>
</wb:context>
...

wb:value

Attributes:

id
path
direction (optional)

Child elements:

wb:on-update (optional)
wd:convertor (note the wd: namespace!) (optional)

This binding element is used to bind the value of a widget.

The element (which itself has no attributes), can contain one or more binding elements that will be executed if the value of the widget has wb:on-update
changed, and thus if the object has been updated. For example, you could use the binding to set the value of an attribute wb:set-attribute changed
to .true

The element has the same purpose as the element in the form definition: it converts between objects (numbers, dates) wd:convertor wd:convertor
and strings. This is mostly used when binding to XML documents. Suppose you have defined a certain widget in a form definition to have a "date"
datatype, and you want to bind to an XML document which contains the date in the XML Schema date representation, then you could define a convertor as
follows:

<wb:value id="birthday" path="person/birthday">
 <wd:convertor datatype="date" type="formatting">
 <wd:patterns>
 <wd:pattern>yyyy-MM-dd</wd:pattern>
 </wd:patterns>
 </wd:convertor>
</wb:value>

The datatype attribute on the element, which you don't have to specify in the form definition, identifies the datatype to which the convertor wd:convertor
belongs.

wb:aggregate

Attributes:

id
path
direction (optional)

Child elements:

wb:value elements

The element is used to bind aggregatefields. Remember that aggregatefields are a special type of widget that groups multiple field wb:aggregate
widgets and lets the user edit their values in one textbox, splitting the values out to the different widgets on submit based on a regexp.

The binding allows to bind the values of the individual field widgets out of which an aggregatefield widget consists. The bindings for these wb:aggregate
field widgets are specified by the child elements.wb:value

wb:repeater

Attributes:

id
parent-path
row-path
unique-row-id (deprecated)
unique-path (deprecated)
row-path-insert (optional)
direction (optional)

Child elements:

wb:identity
wd:convertor (deprecated)
wb:on-bind
wb:on-delete-row
wb:on-insert-row

NOTE: The attributes and and the child element are deprecated in favor of .unique-row-id unique-path wd:convertor <wb:unique-row>

The binding binds repeaters based on the concept that each row in the repeater is identified by one or more widgets uniquely. This unique wb:repeater
identification is necessary to know which rows in the repeater correspond to which objects in the target collection. Newly added rows in the repeater can
(but should not) have a null value for this identification widget(s). Typically this/these widget(s) will not editable, so in most cases it will be an output widget.
If you don't need the identification widget(s) at the client you don't need to add them to the template at all! You only have to specify direction="load"
to this/these widget(s) then. This prevents the database IDs from getting to the client.

The attribute should contain the id of the repeater.id

The attribute specifies the id of the widget appearing on each repeater row that contains the unique identification for that row. The unique-row-id uniqu
 attribute contains the corresponding path in the object model.e-path

NOTE: Both attributes are deprecated. Please use instead.<wb:identity>

The and attributes can best be understood when described differently for XML documents and Javabeans.parent-path row-path

For XML documents:
If you have an XML structure like this:

<things>
 <thing ... />
 <thing ... />
</things>

then the parent-path attribute contains the path to the containing element ("things") and the row-path attribute contains the path to the repeating element
("thing").

For beans:
if your bean has a property "things" which is a Collection [or whathever JXPath supports as lists], then the parent-path should simply contain "." and the
row-path "things".

For both beans and XML documents there is an optional attribute row-path-insert which functions just like the row-path but is used for the nested on-insert-
row binding (see below). By default the row-path-insert just takes the value of the row-path. By explicitely setting them different one can exploit one of the
following use cases:

(1) use xpath-predicates in the row-path (note that you can not do that on the row-path-insert)
(2) save the inserted rows in a different target-node of the backend model.

A child element can be used to specify the convertor to use in case the unique-id from the model is a String (typical for XML documents) wd:convertor
and the matching widget inside the repeater has a different type.

NOTE: This element is deprecated at that place as it is only used in combination with the deprecated attributes and . unique-row-id unique-path
Please use instead.<wb:identity>

The three remaining child elements , , should contain the binding elements that have to be wb:on-bind wb:on-delete-row wb:on-insert-row
executed in case of these three events.

The children of the element are executed when an existing repeater row is updated, or after inserting a new row. The JXPath context is wb:on-bind
automatically changed to match the current row.

The children of the element are executed when a repeater row has been deleted. If you want to delete the row, then put a wb:on-delete-row <wb:
 in there. Alternatively, you could also use the binding to set e.g. an attribute to .delete-node/> wb:set-attribute status deleted

The children of the are executed in case a new row has been added to the repeater. Typically this will contain a wb:on-insert-row wb:insert-node
or a (see the descriptions of these binding elements for more details).wb:insert-bean binding

The childrens of the specify the widgets appearing on each repeater row for the unique identification of that row. Each wb:unique-row <wb:unique-
 child specifies one widget.field>

wb:identity

Child elements:

wb:value widget-bindings that make up the identity

The is just a container for the child elements specifying the bindings of the identification widgets.<wb:identity>

The nested elements just describe regular value bindings that can declare their own convertor if needed.

NOTE: This 'identity' binding is only active in the 'load' operation, so specifying the is meaningless.direction="save"

wb:set-attribute

Attributes:

name
value
direction (optional)

Child elements: none

Set the value of the attribute specified in the name attribute to the fixed string value specified in the value attribute.

NOTE: This binding is never active in the 'load' operation, so there is no need to specify the to protect you model from being direction="save"
changed during load.

wb:delete-node

Attributes:

direction (optional)

Child elements: none

Deletes the current context node.

NOTE: This binding is never active in the 'load' operation, so there is no need to specify the to protect you model from being direction="save"
changed during load.

wb:insert-node

Attributes:

src (optional)
xpath (optional, only in combination with src)
direction (optional)

Child elements: the piece of XML that should be inserted

This binding element can only be used when the target object is an XML document (DOM-tree).

It inserts the content of the element as child of the current context element, or, if a src attribute is specified, retrieves the XML from the wb:insert-node
specified source and inserts that as child of the current context element. In this last case, you can also supply an xpath attribute to select a specific
element from the retrieved source.

NOTE: This binding is never active in the 'load' operation, so there is no need to specify the to protect you model from being direction="save"
changed during load.

wb:insert-bean

Attributes:

classname
addmethod
direction (optional)

This binding element can only be used when the target object is a Javabean.

It instantiates a new object of the type specified in the classname attribute and calls the method specified in the addmethod attribute on the current context
object with the newly instantiated object as argument.

NOTE: This binding is never active in the 'load' operation, so there is no need to specify the to protect you model from being direction="save"
changed during load.

wb:simple-repeater

Attributes:

id
parent-path (same as in wb:repeater)
row-path (same as in wb:repeater)
clear-before-load (default true)
delete-parent-if-empty (default false)
direction (optional)

Child elements: any

A simple repeater binding that will replace (i.e. delete then re-add all) its content.

Works with XML or with JavaBeans if a JXPath factory is set on the binding context.

wb:javascript

Attributes:

id
path
direction (optional)

Child elements:

wb:load-form
wb:save-form

Specifies the binding using two JavaScript snippets, respectively for loading and saving the form.

Example:

<wb:javascript id="foo" path="@foo">
 <wb:load-form>
 var appValue = jxpathPointer.getValue();
 var formValue = doLoadConversion(appValue);
 widget.setValue(formValue);
 </wb:load-form>
 <wb:save-form>
 var formValue = widget.getValue();
 var appValue = doSaveConversion(formValue);
 jxpathPointer.setValue(appValue);
 </wb:save-form>
</wb:javascript>

This example is rather trivial and could be replaced by a simple , but it shows the available variables in the script:<wb:value>

widget: the widget identified by the attribute,id
jxpathPointer: the JXPath pointer corresponding to the attribute,path
jxpathContext (not shown): the JXPath context corresponding to the attribute path

It's much more interesting to fill a selection list via as there is no built-in element for it at the moment. Imagine your binding bean wb:javascript
contains a collection field:

<wb:javascript id="selectionListWidget" path="objectCollection" direction="load">
 <wb:load-form>
 var collection = jxpathPointer.getNode();
 widget.setSelectionList(collection, "id", "name")
 </wb:load-form>
</wb:javascript>

NOTE:

The snippet should be ommitted if the attribute is set to .<wb:save-form> direction load
The snippet should be ommitted if the attribute is set to .<wb:load-form> direction save
The attribute supported in early versions of this binding has been replaced by the attribute as supported now on all @readonly @direction
binding elements.

wb:custom

NOTE: this binding was never available in Woody, it was added on the cforms branch when the woody branch got deprecated. Its documentation just sits
here waiting for the rest of the woody-docs to switch to cforms.

Attributes:

id (optional, if not provided the containing widget-context will be passed)
path (optional, if not provided "." is assumed)
direction (optional)
class (optional, if not present @builderclass and @factorymethod should be)
builderclass (optional)
factorymethod (optional)

Child elements:

wb:config

Allows to specify your own user-defined binding to be written in Java. There are two essential modes of operation reflected in two examples:

Example 1 - No configuration required:

1.
2.
3.

1.
2.
3.

 <fb:custom id="custom" path="custom-value"
 class="org.apache.cocoon.forms.samples.bindings.CustomValueWrapBinding"/>

This describes the classname of your user defined binding class.

Above imposes the following requirements:

there is a CustomValueWrapBinding available in the specified packageclass
it has a default (i.e. no arguments) constructor
it is a subclass of org.apache.cocoon.forms.binding.AbstractCustomBinding

This last will impose the implementation of two methods:

void doLoad(Widget widget, JXPathContext context) throws BindingException;
void doSave(Widget widget, JXPathContext context) throws BindingException;

where the available arguments are

widget: the widget identified by the attribute,id
context: the JXPath context corresponding to the attribute path

Example 2 - with nested configuration:

 <fb:custom id="config" path="config-value"
 builderclass="org.apache.cocoon.forms.samples.bindings.!CustomValueWrapBinding"
 factorymethod="createBinding" >
 <fb:config prefixchar="[" suffixchar="]" />
 </fb:custom>

The additional requirements to your user defined classes are now:

there is a CustomValueWrapBinding class having a static builderclass factorymethod
that can (optionally) take an org.w3c.dom.Element holding it's configuration
and return an instance of your own user-defined binding which must be a non abstract subclass of org.apache.cocoon.forms.binding.
AbstractCustomBinding

Further pointers
the examples included with woody
the cocoon-users mailing list

	WoodyBinding

