Dependency Injection and Configuration

Background

Plugins in Log4j have long supported a primitive form of dependency injection through the use of annotations that indicate where in the configuration to
obtain the injected data. This initially began with the static plugin factory method whose arguments could be attributes (keys with scalar values; in XML,
this is an element attribute; in JSON and YAML, this is a field with a scalar value), elements (further-defined plugin objects to inject; in XML, this is an
element; in JSON and YAML, this is a field with a non-scalar value), and values (a special kind of attribute; in XML, this is the text contents of an element;
in JSON and YAML, this is another attribute typically named "value" or similar), along with bindings for the Conf i gur at i on being processed (usually
used for obtaining the configuration's St r Subst i t ut or for variable interpolation) and the currently processed Node.

Configurations are parsed as a tree of nodes where each node contains a name, list of attributes, child nodes, an optional value, which are processed
recursively unless a plugin sets its def er Chi | dr en option to true which defers loading and binding of the children nodes of that plugin's node. This lazy
loading option is primarily useful for advanced plugins like Rout i ngAppender which selectively load plugin configurations based on processed LogEvent
data.

Later on, support for creating and configuring plugins via builder classes was added for simplifying default value strategies, adding new configuration
options over time without maintaining several deprecated static factory methods, and making tests easier to write when directly referencing plugin
instances. This added injection through fields of the builder class along with a separate static factory method on the plugin class to construct fresh builder
instances.

While this strategy has worked well enough for configurations where all necessary plugin objects are configured through a config file, this has left much
duplicate functionality around log4j-core for loading other types of plugins, and it has made it difficult to inject broader-scoped objects into narrower-scoped
ones (e.g., injecting a singleton-scoped instance into a configuration-scoped instance). In order to simplify plugin handling and configuration loading, these
related plugin loading systems should be unified into a consistent dependency injection API.

API Changes

Inject Annotations, Scopes, Qualifiers, and Factories

Plugin annotations are updated to support a dependency injection API similar to j avax. i nj ect which is sufficiently simple to model both existing
injection strategies as well as new ones introduced by this system (such as method-based and constructor-based injection). To avoid third party
dependencies, Log4j provides its own equivalent annotations to those in j avax. i nj ect for better integration with how Log4j already works. More
specifically, log4j-plugins adds the following annotations to the or g. apache. | oggi ng. | 0g4j . pl ugi ns package:

® @ nj ect - marks a constructor, field, or method for injection. Classes that use this annotation can be obtained from an Injector which handles
binding runtime instances to each of the injection points. Marking a no-arg method with @ nj ect is effectively an initialization method as these
are invoked last. Injection starts with the constructor, then fields, then methods (methods with arguments executed first before no-arg methods).
Inject methods must not be abstract.

© class | njectExanple {
DependencyA dependencyA,;
@ nj ect DependencyB dependencyB;
DependencyC dependencyC,

@ nj ect
I nj ect Exanpl e( DependencyA a) {
dependencyA = a;

}

@ nj ect

voi d set C( DependencyC c) {
dependencyC = c;

}

@ nj ect
voi d post Construct () {
St at usLogger . get Logger () . debug(" Fi ni shed i njecting everything");

}

® @ualifierType - marks an annotation as a qualifier annotation. Qualifiers are used for providing multiple variants of the same type which can
be identified by the qualifier annotation. Qualifiers can be specified on a class, an inject method parameter, a factory method, and an inject field.
® @laned - qualifier for a named instance. This annotation can specify alias names, too (similar to the existing @l ugi nAl i ases annotation).

© class QualifierExanple {
@Naned String foo; // uses field nane by default for value in @\anmed
@Naned({"primary", "legacy-nane"}) String bar; // inline use of nane plus aliases


https://javaee.github.io/javaee-spec/javadocs/javax/inject/package-summary.html

® @copeType - marks an annotation as a scope annotation. Scopes provide a strategy for determining the lifecycle of instances in its scope.
Without a scope, instances are created fresh each time they're injected or obtained from | nj ect or.

® @i ngl et on - scope type that maintains at most one instance for each qualified type. That is, every injected singleton instance and every
singleton instance obtained from | nj ect or will be the same instance.

® @actoryType - marks an annotation as a factory type. Factory annotations are used for marking methods as factories for the returned instance
of that method. This is intended to support existing plugin factory related annotations like @l ugi nFact ory and @l ugi nBui | der Fact ory.

® @actory - marks a method as a factory for instances it returns. Factory methods can be static or not, though instance factory methods may only
be installed by installing an instance of the class with said factory method.

© class FactoryExanpl e {
@ nj ect Dependency dep;

@actory
Producedl nst ance new nstance(@aned String name) {
return new Producedl nst ance( nane);

}

Then, the load and install using an anonymous class for an installation module.

Injector injector = Dl.createlnjector(new Qoject() {
@-actory
@\aned
String getName() { return "exanple"; }

}, FactoryExanpl e. cl ass);

var producedl nstance = injector.getlnstance(Producedl nstance.cl ass);

Another API change is replacing existing Bui | der <T> classes with j ava. uti | . functi on. Suppl i er <T>. To support backward compatibility, when a
static factory method returns an object that implements Bui | der <T> or Suppl i er <T>, then that instance is injected and used as a factory for its type T.

The Core plugin type is updated to use this injection API so that in addition to the existing support for injecting @l ugi nEl enent, @l ugi nAttri bute, @
Pl ugi nBui | der Attri but e, @Il ugi nVal ue, @I ugi nNode, and @! ugi nConf i gur at i on instances, this is extended to support for injection via
fields, methods, and constructors, along with injection of any other instances Injector has bindings for or knows how to create bindings on demand for.
Classes that can have on-demand bindings are injectable classes which are classes with either one @ nj ect constructor or a no-args constructor.
Implementations of LogEvent Fact ory are a good example of injectable classes where the choice of class is configurable at runtime, though the
dependency chain involved can be made explicit while removing boilerplate dependency injection code to where this class is relevant. An abbreviated
example of what a Suppl i er <Logger Conf i g> class may look like:



public class Builder inplenents java.util.function. Supplier<LoggerConfig> {
11

/1 note that nmethods with qualified parameters are inplicitly @ nject
public Builder w thLevel (@l ugi nAttribute Level level) {

this.level = level;

return this;

}

public Builder w thLogger Nanme(
@Requi red(nessage = "Loggers cannot be configured without a name") @l uginAttribute String name) {
this. | oggerNane = nane;
return this;

}

public Builder w thRefs(@l ugi nEl enent AppenderRef[] refs) {
this.refs = refs;
return this;

}

public Builder w thConfig(@l ugi nConfiguration Configuration config) {
this.config = config;
return this;

}

public Builder withFilter( @l ugi nElenent Filter filter) {
this.filter = filter;
return this;

}
/1 need to specify @nject here because LogEventFactory is an unqualified bean
@ nj ect
public Builder setLogEventFactory(LogEvent Factory | ogEvent Factory) {
this. | ogEvent Factory = | ogEvent Factory;
return this;
}
@verride
public LoggerConfig get() {
I
}

Keys and Bindings

The Key<T> class provides a way to identify plugins by type, optional qualifier, and a name. Existing @l ugi nAttri but e and @l ugi nVal ue
annotations are natural qualifier types, though given that these annotations are duplicated in log4j-plugins and log4j-core, a more generic mechanism is
needed to treat these as equivalent. This is where the name aspect of a Key comes in; all named-style qualifier annotations are treated as @\ared
qualifiers. The Confi gur ati onl nj ect or and Confi gur ati onBi nder APl in log4j-plugins is replaced with a simpler strategy for supplying a (possibly
converted) value for a particular Node instance. Nodes can be configured via | nj ect or which is where general dependency injection occurs along with
binding of provided configuration attributes in the Node instance. Annotation-handling strategies for configuration injection are replaced with a parsing
strategy while strategies for binding are inlined into the general logic of | nj ect or .

When processing a Conf i gur at i on with a Node tree, the general logic for combining plugin instances is handled specially by different Conf i gur ati on
implementations. Abst r act Conf i gur at i on should be updated to rely on dependency injection to form the full graph of plugin instances so that different
configuration formats would only be responsible for transforming input configuration data into a tree of Nodes which get processed by dependency
injection. Plugins that inject a Conf i gur at i on can be refactored to inject whichever relevant instances are needed from the configuration instead of
looking them up manually. For backward compatibility, the Conf i gur at i on can be obtained from | nj ect or .

No annotation processing updates are required here as the existing plugin annotations provide enough useful metadata on plugins to avoid loading them
all at runtime. Plugin classes relying on @ nj ect are supported as soon as that class is referenced in the injection system as the injection constructor is
discovered on demand.



An additional API is added for users to provide custom injection modules to allow programmatic configuration of other injectable instances. This may be
useful for unifying some Ser vi ceLoader -related APIs in Log4j. These modules can set up bindings for configurable classes outside the normal
configuration system. For example, if injection begins from Log4j Logger Cont ext , then these modules can be used for programmatically configuring a Co
nt ext Sel ect or and Shut downCal | backRegi st ry instead of relying on optional system properties to specify a class name. Programmatic
configuration from a Ser vi ceLoader -created class simplifies class loading as direct references to classes can be compiled in directly. When injection
begins from a Logger Cont ext , modules can customize classes that are global to a configuration or logger context. This also provides a natural place to
define or override Conf i gur at i onFact ory instances. Other programmatic instances needed for various plugins can be more easily specified through

this API.



	Dependency Injection and Configuration

