WordCount
WordCount Example

WordCount example reads text files and counts how often words occur. The input is text files and the output is text files, each line of which contains a
word and the count of how often it occured, separated by a tab.

Each mapper takes a line as input and breaks it into words. It then emits a key/value pair of the word and 1. Each reducer sums the counts for each word
and emits a single key/value with the word and sum.

As an optimization, the reducer is also used as a combiner on the map outputs. This reduces the amount of data sent across the network by combining
each word into a single record.

To run the example, the command syntax is

bin/hadoop jar hadoop-*-examples.jar wordcount [-m <#maps>] [-r <#reducers>] <in-dir> <out-dir>

All of the files in the input directory (called in-dir in the command line above) are read and the counts of words in the input are written to the output
directory (called out-dir above). It is assumed that both inputs and outputs are stored in HDFS (see ImportantConcepts). If your input is not already in
HDFS, but is rather in a local file system somewhere, you need to copy the data into HDFS using a command like this:

bin/hadoop dfs -mkdir <hdfs-dir>

bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>

As of version 0.17.2.1, you only need to run a command like this:

bin/hadoop dfs -copyFromLocal <local-dir> <hdfs-dir>

Word count supports generic options : see DevelopmentCommandLineOptions

Below is the standard wordcount example implemented in Java:

https://cwiki.apache.org/confluence/display/HADOOP2/ImportantConcepts
https://cwiki.apache.org/confluence/display/HADOOP2/DevelopmentCommandLineOptions

package org. myorg;

inport java.io.|OException;
import java.util.*;

i mport org. apache. hadoop. fs. Pat h;

i mport org.apache. hadoop. conf. *;

i nport org. apache. hadoop.io. *;

i mport org. apache. hadoop. mapr educe. *;

i nport org. apache. hadoop. mapreduce. | i b.input.Fil el nput For mat ;

i nport org. apache. hadoop. mapreduce. | i b. i nput. Text | nput For mat ;

i mport org. apache. hadoop. mapr educe. |i b. out put . Fi | eQut put For nat ;
i mport org.apache. hadoop. mapr educe. | i b. out put . Text Qut put For nat ;

public class WordCount {

public static class Map extends Mapper<LongWitable, Text, Text, IntWitable> {
private final static IntWitable one = new IntWitable(l);
private Text word = new Text();

public void map(LongWitable key, Text value, Context context) throws | COException, InterruptedException {
String line = value.toString();
StringTokeni zer tokeni zer = new StringTokeni zer(line);
whi | e (tokenizer.hasMreTokens()) {
wor d. set (t okeni zer. next Token());
context.wite(word, one);

}
public static class Reduce extends Reducer<Text, IntWitable, Text, IntWitable> {

public void reduce(Text key, Iterable<lntWitable> values, Context context)
throws | OException, |nterruptedException {
int sum= 0;
for (IntWitable val : values) {
sum += val . get();
}

context.wite(key, new IntWitable(sum);

}

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();

Job job = new Job(conf, "wordcount");

j ob. set Qut put KeyC ass(Text . cl ass);
j ob. set Qut put Val ued ass(IntWitable.class);

j ob. set Mapper O ass(Map. cl ass);
j ob. set Reducer O ass(Reduce. cl ass) ;

j ob. set I nput For nat G ass(Text | nput For mat . cl ass) ;
j ob. set Qut put For mat G ass(Text Qut put For mat . cl ass);

Fi | el nput For mat . addl nput Pat h(j ob, new Path(args[0]));
Fi | eQut put For mat . set Qut put Pat h(j ob, new Path(args[1]));

j ob. wai t For Conpl eti on(true);

	WordCount

