
For Tapestry 4 Users: Tapestry 5
does not use the fragile "form rewind"
approach from Tapestry 4. Instead, a
hidden field generated during the
render stores the information needed
to process the form submission.

Related Articles

Forms and Validation
 Forms and Form Components FAQ

Bean Validation

Forms and Validation
Forms are the traditional way for most web applications to gather significant information from the user. Whether it's a search form, a login screen or a multi-
page registration wizard, Tapestry uses standard HTML forms, with HTTP POST actions by default. In addition, AJAX-based form submission is supported
using .Zones

Tapestry provides support for creating and rendering forms, populating their fields, and validating user input.
For simple cases, input validation is declarative, meaning you simply tell Tapestry what validations to apply to
a given field, and it takes care of it on the server and (optionally) on the client as well. In addition, you can
provide event handler methods in your page or component classes to handle more complex validation
scenarios.

Finally, Tapestry not only makes it easy to present errors messages to the user, but it can also automatically highlight form fields when validation fails.

Contents

Related Articles

The Form Component
Form Events
Handling Events
Tracking Validation Errors
Storing Data Between Requests
Configuring Fields and Labels

Form Validation
Available Validators
Centralizing Validation with @Validate
HTML5 Client-side Validation
Server Side Validation
Customizing Validation Messages

Customizing Validation Messages for BeanEditForm
Configuring Validator Contraints in the Message Catalog
Validation Macros
Overriding the Translator with Events

The Form Component
The core of Tapestry's form support is the component. The Form component encloses (wraps around) all the other such as Form field components TextField
, , , etc.TextArea Checkbox

Form Events

The Form component emits a number of . You'll want to provide event handler methods for some of these.component events

When rendering, the Form component emits two events: first, "prepareForRender", then "prepare". These allow the Form's container to set up any fields or
properties that will be referenced in the form. For example, this is a good place to create a temporary entity object to be rendered, or to load an entity from
a database to be edited.

When user submits the form on the client, a series of steps occur on the server.

First, the Form emits a "prepareForSubmit" event, then a "prepare" event. These allow the container to ensure that objects are set up and ready to receive
information from the form submission.

Next, all the fields inside the form are to pull values out of the incoming request, validate them and (if valid) store the changes.activated

After the fields have done their processing, the Form emits a "validate" event. This is your chance to perform any
cross-form validation that can't be described declaratively.

Next, the Form determines if there have been any validation errors. If there have been, then the submission is
considered a failure, and a "failure" event is emitted. If there have been no validation errors, then a "success" event is emitted.

Finally, the Form emits a "submit" event, for logic that doesn't care about success or failure.

Form Event (in
order)

Phase When emitted (and typical use) Method
Name

@OnEvent Constant

https://cwiki.apache.org/confluence/display/TAPESTRY/Forms+and+Form+Components+FAQ
https://cwiki.apache.org/confluence/display/TAPESTRY/Bean+Validation
https://cwiki.apache.org/confluence/display/TAPESTRY/Ajax+and+Zones
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/corelib/components/Form.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/corelib/components/TextField.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/corelib/components/TextField.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/corelib/components/TextArea.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/corelib/components/Checkbox.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Events

prepareForRender Render Before rendering the form (e.g. load an entity from a database to be edited) onPrepareForR
ender()

EventConstants.
PREPARE_FOR_RENDER

prepare Render Before rendering the form, but after prepareForRender onPrepare() EventConstants.PREPARE

prepareForSubmit Submit Before the submitted form is processed onPrepareForSu
bmit()

EventConstants.
PREPARE_FOR_SUBMIT

prepare Submit Before the submitted form is processed, but after prepareForSubmit onPrepare() EventConstants.PREPARE

validate Submit After fields have been populated from submitted values and validated (e.g.
perform cross-field validation)

onValidate EventConstants.VALIDATE

validateForm Submit same as validate (deprecated – do not use) onValidateForm

failure Submit After one or more validation errors have occurred onFailure() EventConstants.FAILURE

success Submit When validation has completed any errors (e.g. save changes to the without
database)

onSuccess() EventConstants.SUCCESS

submit Submit After all validation (success or failure) has finished onSubmit() EventConstants.SUBMIT

canceled Submit Whenever a or component containing or Submit LinkSubmit mode="cancel" mode
 is clicked="unconditional"

onCanceled() EventConstants.CANCELED

Note that the "prepare" event is emitted during both form rendering and form submission.

Handling Events

Main Article: Component Events

You handle events by providing methods in your page or component class, either following the on From () naming convention or using Event Component
the OnEvent annotation. For example:

Event Handler Using Naming Convention

 void onValidateFromPassword() { ...}

or the equivalent using @OnEvent:

Event Handler Using @OnEvent Annotation

 @OnEvent(value=EventConstants.VALIDATE, component="password")
 void verifyThePassword() { ...}

Tracking Validation Errors

Associated with the Form is a that tracks all the provided user input and validation errors for every field in the form. The tracker can be ValidationTracker
provided to the Form via the Form's tracker parameter, but this is rarely necessary.

The Form includes methods and , which are used to see if the Form's validation tracker contains any errors.isValid() getHasErrors()

In your own logic, it is possible to record your own errors. Form includes two different versions of method , one of which specifies a recordError() Field
(an interface implemented by all form element components), and one of which is for "global" errors, not associated with any particular field. If the error
concerns only a single field, you should use the first version so that the field will be highlighted.

Storing Data Between Requests

As with other action requests, the result of a form submission (except when using) Zones
is to send a redirect to the client, which results in a second request (to re-render the
page). The ValidationTracker must be (generally in the HttpSession) across persisted
these two requests in order to prevent the loss of validation information. Fortunately, the
default ValidationTracker provided by the Form component is persistent, so you don't
normally have to worry about it.

However, for the same reason, the individual fields updated by the components should
also be persisted across requests, and this is something you need to do yourself – do
generally with the @Persist annotation.

New in Tapestry 5.4

Starting in Tapestry 5.4, the default behavior for
server-side validation failures is to re-render the
page within the same request (rather than emitting
a redirect). This removes the need to use a
session-persistent field to store the validation
tracker when validation failures occur.

https://cwiki.apache.org/confluence/display/TAPESTRY/Component+Events
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ValidationTracker.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/Field.html
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=84805477
https://cwiki.apache.org/confluence/display/TAPESTRY/Persistent+Page+Data

For example, a Login page class, which collects a user name and a password, might look like:

Login.java Example

package com.example.newapp.pages;

import com.example.newapp.services.UserAuthenticator;
import org.apache.tapestry5.annotations.*;
import org.apache.tapestry5.corelib.components.Form;
import org.apache.tapestry5.corelib.components.PasswordField;
import org.apache.tapestry5.ioc.annotations.Inject;

public class Login {
 @Persist
 @Property
 private String userName;

 @Property
 private String password;

 @Inject
 private UserAuthenticator authenticator;

 @InjectComponent("password")
 private PasswordField passwordField;

 @Component
 private Form loginForm;

 /**
 * Do the cross-field validation
 */
 void onValidateFromLoginForm() {
 if (!authenticator.isValid(userName, password)) {
 // record an error, and thereby prevent Tapestry from emitting a "success" event
 loginForm.recordError(passwordField, "Invalid user name or password.");
 }
 }

 /**
 * Validation passed, so we'll go to the "PostLogin" page
 */
 Object onSuccess() {
 return PostLogin.class;
 }
}

Because a form submission is really requests: the submission itself (which results in a two
redirect response), then a second request for the page (which results in a re-rendering of
the page), it is necessary to persist the userName field between the two requests, by
using the @Persist annotation. This would be necessary for the password field as well,
except that the component never renders a value.PasswordField

The Form only emits a "success" event if the there are no prior validation errors. This means it is not necessary to write if (form.getHasErrors())
 as the first line of the method.return;

Note that the onValidateFromLoginForm() and
onSuccess() methods are not public; event
handler methods can have any visibility, even
private. Package private (that is, no modifier) is
the typical use, as it allows the component to be
tested, from a test case class in the same
package.

To avoid data loss, fields whose values are stored in the HttpSession (such as
userName, above) must be serializable, particularly if you want to be able to
cluster your application or preserve sessions across server restarts.

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/corelib/components/PasswordField.html

Finally, notice how business logic fits into validation. The UserAuthenticator service is responsible for ensuring that the userName and (plaintext) password
are valid. When it returns false, we ask the Form component to record an error. We provide the PasswordField instance as the first parameter; this ensures
that the password field, and its label, are decorated when the Form is re-rendered, to present the errors to the user.

Configuring Fields and Labels

The Login page template below contains a minimal amount of Tapestry instrumentation and references some of the CSS classes (Bootstrap is Bootstrap
automatically integrated into each page by default, starting with Tapestry 5.4).

Login.tml Example

<html t:type="layout" title="newapp com.example"
 xmlns:t="http://tapestry.apache.org/schema/tapestry_5_4.xsd">

 <div class="row">
 <div class="span4 offset3">
 <t:form t:id="loginForm">
 <h2>Please sign in</h2>
 <t:textfield t:id="userName" t:mixins="formgroup"/>
 <t:passwordfield t:id="password" value="password" t:mixins="formgroup"/>
 <t:submit class="btn btn-large btn-primary" value="Sign in"/>
 </t:form>
 </div>
 </div>

</html>

Rendering the page gives a reasonably pleasing first pass:

The Tapestry Form component is responsible for creating the necessary URL for the form submission (this is Tapestry's responsibility, not yours).

For the TextField, we provide a component id, userName. We could specify the value parameter, but the default is to match the TextField's id against a
property of the container, the Login page, if such a property exists.

As a rule of thumb, you should always give your fields a specific id (this id will be used to generate the and attributes of the rendered tag). Being name id
allowed to omit the value parameter helps to keep the template from getting too cluttered.

The FormGroup mixin decorates the field with some additional markup, including a <label> element; this leverages more of Bootstrap.

http://getbootstrap.com

userName component as rendered

<div class="form-group">
 <label for="userName" class="control-label">User Name</label>
 <input id="userName" class="form-control" name="userName" type="text">
</div>

Form Validation
The above example is a very basic form which allows the fields to be empty. However, with a little more effort we can add client-side validation to prevent
the user from submitting the form with either field empty.

Validation in Tapestry involves associating one or more with a form element component, such as TextField or PasswordField. This is done using validators
the parameter:validate

<t:textfield t:id="userName" validate="required" t:mixins="formgroup"/>
<t:passwordfield t:id="password" value="password" validate="required" t:mixins="formgroup"/>

Available Validators

Tapestry provides the following built-in validators:

Validator Constraint
Type

Description Example

email – Ensures that the given input looks like a valid e-mail
address

<t:textfield value="userEmail" validate="email" />

max long Enforces a maximum integer value <t:textfield value="age" validate="max=120,min=0" />

maxLength int Makes sure that a string value has a maximum length <t:textfield value="zip" validate="maxlength=7" />

min long Enforces a minimum integer value <t:textfield value="age" validate="max=120,min=0" />

minLength int Makes sure that a string value has a minimum length <t:textfield value="somefield" validate="
minlength=1" />

none – Does nothing (used to override a @Validate
annotation)

<t:textfield value="somefield" validate="none" />

regexp pattern Makes sure that a string value conforms to a given
pattern

<t:textfield value="letterfield" validate="regexp=^[A
-Za-z]+$" />

required – Makes sure that a string value is not null and not the
empty string

<t:textfield value="name" validate="required" />

checked (Since
5.4.5)

boolean Makes sure that the boolean is true (checkbox is
checked)

<t:Checkbox value="value" validate="checked" />

unchecked (Since
5.4.5)

boolean Makes sure that the boolean is false (checkbox is
unchecked)

<t:Checkbox value="value" validate="unchecked" />

Centralizing Validation with @Validate

The @ annotation can take the place of the validate parameter of TextField, PasswordField, TextArea and other components. When the validate Validate
parameter is not bound in the template file, the component will check for the @Validate annotation and use its value as the validation definition.

The annotation may be placed on the getter or setter method, or on the field itself.

Let's update the two fields of the Login page:

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/beaneditor/Validate.html

 @Persist
 @Property
 @Validate("required")
 private String userName;

 @Property
 @Validate("required")
 private String password;

Now, we'll rebuild the app, refresh the browser, and just hit enter:

The form has updated, in place, to present the errors. You will not be able to submit the form until some value is provided for each field.

HTML5 Client-side Validation

When the is set to true (it is by default), the Tapestry's built-in validators will tapestry.enable-html5-support configuration symbol false
automatically enable the HTML5-specific "type" and validation attributes to the rendered HTML of Tapestry's form components, triggering the HTML5 client-
side validation behavior built into most modern browsers. For example, if you use the "email" and "required" validators, like this:

<t:textfield validate="email,required" .../>

then the output HTML will look like this:

<input type="email" required ...>

which causes modern browsers to present a validation error message whenever text is entered that doesn't look like an email address, or if the field is left
blank.

The browser's built-in validation is performed Tapestry's own client-side validation. This is so that older browsers will still perform client-side before
validation as expected.

The following behaviors are included:

The " " validator adds the "required" attribute to the rendered HTMLrequired
The " " validator adds the "required" attribute to the rendered HTML checked (Since 5.4.5)
The " " validator adds the "pattern" attribute to the rendered HTMLregexp
The " " validator sets the attribute to "email" in the rendered HTMLemail type

https://cwiki.apache.org/confluence/display/TAPESTRY/Configuration#Configuration-tapestry.enable-html5-support

The " " validator sets the attribute to "number" and adds the "min" attribute in the rendered HTMLmin type
The " " validator sets the attribute to "number" and adds the "max" attribute in the rendered HTMLmax type
When bound to a type, the TextField component sets the attribute to "number" in the rendered HTMLnumber type

Server Side Validation

Some validation can't, or shouldn't, be done on the client side. How do we know if the password is correct? Short of downloading all users and passwords
to the client, we really need to do the validation on the server.

In fact, all client-side validation (via the validate parameter, or @Validate annotation) is performed again on the server.

It is also possible to perform extra validation there.

 /**
 * Do the cross-field validation
 */
 void onValidateFromLoginForm() {
 if (!authenticator.isValid(userName, password)) {
 // record an error, and thereby prevent Tapestry from emitting a "success" event
 loginForm.recordError(passwordField, "Invalid user name or password.");
 }
 }

This is the validate event handler from the loginForm component. It is invoked once all the components have had a chance to read values out of the
request, do their own validations, and update the properties they are bound to.

In this case, the authenticator is used to decide if the userName and password is valid. In a real application, this would be where a database or other
external service was consulted.

If the combination is not valid, then the password field is marked as in error. The form is used to record an error, about a component (the passwordField)
with an error message.

Entering any two values into the form and submitting will cause a round trip; the form will re-render to present the error to the user:

Notice that the cursor is placed directly into the password field.

In versions of Tapestry prior to 5.4, a form with validation errors would result in a redirect response to the client; often, temporary server-side
data (such as the userName field) would be lost. Starting in 5.4, submitting a form with validation errors results in the new page being rendered
in the same request as the form submission.

Customizing Validation Messages

Each validator (such as "required" or "minlength") has a default message used (on the client side and the server side) when the constraint is violated; that
is, when the user input is not valid.

The message can be customized by adding an entry to the page's (or the containing component's message catalog). As with any message catalog
localized property, this can also go into the application's message catalog.

The first key checked is - - -message.formId fieldId validatorName

formId: the local component id of the Form component
fieldId: the local component id of the field (TextField, etc.)
validatorName: the name of the validator, i.e., "required" or "minlength"

If there is no message for that key, a second check is made, for - -message. fieldId validatorName If that does not match a message, then the built-in default
validation message is used.

For example, if the form ID is "loginForm", the field ID is "userName", and the validator is "required" then Tapestry will first look for a "loginForm-userName-
required-message" key in the message catalog, and then for a "userName-required-message" key.

The validation message in the message catalog may contain (such as %s) to indicate where the validate parameter's value will printf-style format strings
be inserted. For example, if the validate parameter in the template is minLength=3 and the validation message is "User name must be at least %s
characters" then the corresponding error message would be "User name must be at least 5 characters".

Customizing Validation Messages for BeanEditForm

The component also supports validation message customizing. The search for messages is similar; the is the component id of the BeanEditForm formId
BeanEditForm component (not the Form component it contains). The is the property name.fieldId

Configuring Validator Contraints in the Message Catalog

It is possible to omit the validation constraint from the validate parameter (or @Validator annotation), in which case it is expected to be stored in the
message catalog.

This is useful when the validation constraint is awkward to enter inline, such as a regular expression for use with the regexp validator.

The key here is similar to customizing the validation message: - - or just - .formId fieldId validatorName fieldId validatorName

For example, your template may have the following:

 <t:textfield t:id="ssn" validate="required,regexp"/>

And your message catalog can contain:

ssn-regexp=\d{3}-\d{2}-\d{4}
ssn-regexp-message=Social security numbers are in the format 12-34-5678.

This technique also works with the BeanEditForm; as with validation messages, the formId is the BeanEditForm component's id, and the fieldId is the
name of the property being editted.

Validation Macros

Lists of validators can be combined into . This mechanism is convenient for ensuring consistent validation rules across an application. To validation macros
create a validation macro, just contribute to the ValidatorMacro Service in your module class (normally AppModule.java), by adding a new entry to the
configuration object, as shown below. The first parameter is the name of your macro, the second is a comma-separated list of validators:

Added in 5.2

https://cwiki.apache.org/confluence/display/TAPESTRY/Localization
https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html
https://cwiki.apache.org/confluence/display/TAPESTRY/BeanEditForm+Guide

AppModule.java (partial)

@Contribute(ValidatorMacro.class)
public static void combinePasswordValidators(MappedConfiguration<String, String> configuration) {
 configuration.add("passwordValidator","required,minlength=5,maxlength=15");
}

Then, you can use this new macro in component templates and classes:

<input t:type="textField" t:id="password" t:validate="passwordValidator" />

@Validate("password")
private String password;

Overriding the Translator with Events

The TextField, PasswordField and TextArea components all have a translate parameter, a object that is used to convert values on the FieldTranslator
server side to strings on the client side.

In most cases, the translate parameter is not set explicitly; Tapestry derives an appropriate value based on the type of property being editted by the field.

In certain cases, you may want to override the translator. This can be accomplished using two events triggered on the component, "toclient" and
"parseclient".

The "toclient" event is passed the current object value and returns a string, which will be the default value for the field. When there is no event handler, or
when the event handler returns null, the default Translator is used to convert the server side value to a string.

For example, you may have a quantity field that you wish to display as blank, rather than zero, initially:

 <t:textfield t:id="quantity" size="10"/>

 . . .

 private int quantity;

 String onToClientFromQuantity()
 {
 if (quantity == 0) return "";

 return null;
 }

This is good so far, but if the field is optional and the user submits the form, you'll get a validation error, because the empty string is not valid as an integer.

That's where the "parseclient" event comes in:

 Object onParseClientFromQuantity(String input)
 {
 if ("".equals(input)) return 0;

 return null;
 }

The event handler method has precedence over the translator. Here it checks for the empty string (and note that the input may be null!) and evaluates that
as zero.

Again, returning null lets the normal translator do its work.

The event handler may also throw a to indicate a value that can't be parsed.ValidationException

Now, what if you want to perform your own custom validation? That's another event: "validate":

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/FieldTranslator.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ValidationException.html

 void onValidateFromCount(Integer value) throws ValidationException
 {
 if (value.equals(13)) throw new ValidationException("Thirteen is an unlucky number.");
 }

This event gets fired the normal validators. It is passed the value (not the string from the client, but the object value from the translator, or after parsed
from the "parseclient" event handler).

The method may not return a value, but may throw a ValidationException to indicate a problem with the value.

Caution: These events are exclusively on the . This means that, in certain circumstances, an input value will be rejected on the client side even server side
though it is valid on the server side. You may need to disable client-side validation in order to use this feature.

	Forms and Validation

