
IoC Cookbook - Overriding IoC Services

IoC Cookbook - Basic Services and Injection IoC cookbook IoC Cookbook - Patterns

Overriding Tapestry IoC Services
Tapestry is designed to be easy to customize, and the IoC container is the key to that customizability.

One of Tapestry's most important activities is resolving injected objects; that is, when Tapestry is building an object or service and sees a constructor
parameter or a field, it must decide what value to plug in. Most of the time, the injected object is a service defined elsewhere within the Tapestry IoC
container.

However, there are cases where you might want to override how Tapestry operates in some specific way.

The strategy used to determine what object gets injected is ; thus we can take advantage of several features of the defined inside Tapestry IoC itself
Tapestry IoC container in order to take control over specific injections.

Contributing a Service Override

In most cases, services are injected by matching just the type; there is no @ annotation, just a method or constructor parameter whose type InjectService
matches the service's interface.

In this case, it is very easy to supply your own alternate implementation of a service, by in your module class (usually contributing a Service Override
AppModule.java), like this:

AppModule.java (partial)

 @Contribute(ServiceOverride.class)
 public static void setupApplicationServiceOverrides(MappedConfiguration<Class,Object> configuration)
 {
 configuration.addInstance(SomeServiceType.class, SomeServiceTypeOverrideImpl.class);
 }

The name of the method is not important, as long as the @ annotation is present on the method.Contribute

In this example, we are using which will instantiate the indicated class and handle dependency resolution. (Be careful with this, because addInstance()
in some cases, resolving dependencies of the override class can require checking against the ServiceOverrides service, and you'll get a runtime exception
about ServiceOverrides requiring itself!).

Sometimes you'll want to define the override as a service of its own. This is useful if you want to inject a Logger specific to the service, or if the overriding
implementation needs a :service configuration

AppModule.java (partial)

 public static void bind(ServiceBinder binder)
 {
 binder.bind(SomeServiceType.class, SomeServiceTypeOverrideImpl.class).withId("SomeServiceTypeOverride");
 }

 @Contribute(ServiceOverride.class)
 public static void setupApplicationServiceOverrides(MappedConfiguration<Class,Object> configuration, @Local
SomeServiceType override)
 {
 configuration.add(SomeServiceType.class, override);
 }

Here we're defining a service using the module's method.bind()

Every service in the IoC container must have a unique id, that's why we used the method; if we we hadn't, the default service id would have withId()
been "SomeServiceType" which is a likely conflict with the very service we're trying to override.

We can inject our overriding implementation of SomeServiceType using the special @ annotation, which indicates that a service within the same Local
module only should be injected (that is, services of the indicated type in other modules are ignored). Without @Local, there would be a problem because
the override parameter would need to be resolved using the MasterObjectProvider and, ultimately, the ServiceOverride service; this would cause Tapestry
to throw an exception indicating that ServiceOverride depends on itself. We defuse that situation by using @Local, which prevents the
MasterObjectProvider service from being used to resolve the override parameter.

https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Basic+Services+and+Injection
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Basic+Services+and+Injection
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Patterns
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Patterns
https://cwiki.apache.org/confluence/display/TAPESTRY/Injection+in+Detail
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/InjectService.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/Contribute.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Tapestry+IoC+Configuration
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/annotations/Local.html

Decorating Services

Another option is to the existing service. Perhaps you want to extend some of the behavior of the service but keep the rest.decorate

Alternately, this approach is useful to override a service that is matched using marker annotations.

AppModule.java (partial)

 public SomeServiceType decorateSomeServiceType(final SomeServiceType delegate)
 {
 return new SomeServiceType() { . . . };
 }

This decorate method is invoked because its name matches the service id of the original service, "SomeServiceType" (you have to adjust the name to
match the service id).

The method is passed the original service and its job it to return an , an object that implements the same interface, wrapping around the original interceptor
service. In many cases, your code will simply re-invoke methods on the delegate, passing the same parameters. However, an interceptor can decide to not
invoke methods, or it can change parameters, or change return values, or catch or throw exceptions.

Note that the object passed in as may be the core service implementation, or it may be some other interceptor from some other decorator for delegate
the same service.

IoC Cookbook - Basic Services and Injection IoC cookbook IoC Cookbook - Patterns

https://cwiki.apache.org/confluence/display/TAPESTRY/Tapestry+IoC+Decorators
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Basic+Services+and+Injection
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Basic+Services+and+Injection
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+cookbook
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Patterns
https://cwiki.apache.org/confluence/display/TAPESTRY/IoC+Cookbook+-+Patterns

	IoC Cookbook - Overriding IoC Services

