
Related Articles

Injection FAQ
Injection in Detail

 Environmental Services
Injection

Using JSR 330 standard annotations

Logging in Tapestry IOC Operation Tracker

 can be used for injection in Tapestry 5.3 and later.JSR-330 annotations

The following table demonstrates that most of annotations in Tapestry IoC and JSR-330 are interchangeable. However,
there are few differences in semantics.

JSR-330
javax.inject

Tapestry
org.apache.tapestry5.ioc.annotations

Comment

@Inject @Inject -

@Inject
@Named

@InjectService -

@Scope @Scope -

@Qualifier - Tapestry marker annotations don’t need any qualifier annotations

@Singleton - By default all Tapestry services are singletons

Field Injection
Let’s start with field injection. In Tapestry the injection into fields is triggered by or annotations. When @Inject annotation is present @Inject @InjectService
on a field, Tapestry tries to resolve the object to inject by the type of the field. If several implementations of the same service interface are available in the
registry, you have to disambiguate which implementation you want to be injected. This can be done by placing the annotation on the @InjectService
injection point.

import org.apache.tapestry5.ioc.annotations.Inject;
import org.apache.tapestry5.ioc.annotations.InjectService;

...

public class AuthenticationFilter implements ComponentRequestFilter {

 @InjectService("HttpBasic")
 private AuthenticationService basicAuthService;

 @InjectService("HttpDigest")
 private AuthenticationService digestAuthService;

 @Inject
 private Response response;

 ...

}

Now let’s see the JSR-330 equivalent of the same service. As you can see the @Inject annotations are interchangeable. The difference is how to get a
service by its unique id. For this purpose JSR-330 provides the annotation which accompanies the @Inject annotation.@Named

Added in 5.3

https://cwiki.apache.org/confluence/display/TAPESTRY/Injection+FAQ
https://cwiki.apache.org/confluence/display/TAPESTRY/Injection+in+Detail
https://cwiki.apache.org/confluence/display/TAPESTRY/Environmental+Services
https://cwiki.apache.org/confluence/display/TAPESTRY/Injection
https://cwiki.apache.org/confluence/display/TAPESTRY/Logging+in+Tapestry
https://cwiki.apache.org/confluence/display/TAPESTRY/Logging+in+Tapestry
https://cwiki.apache.org/confluence/display/TAPESTRY/IOC
https://cwiki.apache.org/confluence/display/TAPESTRY/IOC
https://cwiki.apache.org/confluence/display/TAPESTRY/Operation+Tracker
https://cwiki.apache.org/confluence/display/TAPESTRY/Operation+Tracker
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/Inject.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/InjectService.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/InjectService.html
http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/Named.html

import javax.inject.Inject;
import javax.inject.Named;

...

public class AuthenticationFilter implements ComponentRequestFilter {

 @Inject @Named("HttpBasic")
 private AuthenticationService basicAuthService;

 @Inject @Named("HttpDigest")
 private AuthenticationService digestAuthService;

 @Inject
 private Response response;

 ...

}

Constructor Injection
For constructor injection the @Inject annotations are interchangeable. You can use either JSR-330 or Tapestry annotation to mark a constructor for
injection. Note that at most one constructor per class may be marked as injection point.

However, the semantics of constructor injection are different in JSR-330 and Tapestry IoC. In JSR-330 a constructor is injectable only if the @Inject
annotation is present.

public class Car {

 public Car() { ... }

 @Inject
 public Car(Engine engine) { ... }
}

In Tapestry the @Inject annotation for constructors is optional. All available constructors are candidates for injection: the constructor with the most
parameters will be invoked.

public class Car {

 public Car() { ... }

 public Car(Engine engine) { ... }

}

When several constructors are available and you don’t want the constructor with most parameters to be injectable, you need to place the annotatio@Inject
n.

public class Car {

 public Car() { ... }

 @Inject
 public Car(Engine engine) { ... }

 public Car(Engine engine, Logger logger) { ... }

}

Injection Into Pages and Components

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/Inject.html

Inside Tapestry components, injection occurs exclusively on fields. So far the injection was triggered by the or annotations. As of @Inject @InjectService
version 5.3 the injection points can also be marked with JSR-330 annotations. The following example demonstrates that.

public class Index {

 @Inject
 private Request request;

 @javax.inject.Inject
 private ComponentResources resources;

 @javax.inject.Inject
 @Named("FrenchGreeter")
 private Greeter greeter;

 @javax.inject.Inject
 @Symbol(SymbolConstants.PRODUCTION_MODE)
 private boolean productionMode;

 void onActivate() { ... }

}

Marker/Qualifier Annotations
Both JSR-330 and Tapestry IoC allow you to disambiguate services by marker or qualifier annotations, as shown in the following example.

public class Index {

 @Inject
 @French
 private Greeter greeter;

}

Again, there is a slight difference. In JSR-330 a qualifier annotation like in the example above needs to be annotated by the annotatio@French @Qualifier
n.

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.FIELD)
@javax.inject.Qualifier
public @interface French {
}

In Tapestry any annotation can be a marker annotation. You don’t need to place something like the annotation on your marker annotation.@Qualifier

Method Injection
Injectable methods is a next slight difference. In JSR-330 a method is injectable if the @Inject annotation is present. In Tapestry the @Inject annotation is
optional. An ordinary setter method is a candidate to perform injection.

public class Car {

 private Engine engine;

 public void setEngine(Engine engine) {
 this.engine = engine;
 }

}

http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/Inject.html
http://tapestry.apache.org/current/apidocs/org/apache/tapestry5/ioc/annotations/InjectService.html
http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/Qualifier.html
http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/Qualifier.html

When building a instance, Tapestry IoC will try to resolve a service of type . If available, Tapestry will perform injection by invoking the setter Car Engine
method.

Besides that, module methods are injectable. Again, there is no need to mark the methods with @Inject annotation as Tapestry explicitly knows which
module methods to invoke. In the following example you can see how to use annotation to inject a service by id into a .@Named contribute method

public class TapestryModule {

 @Contribute(BindingSource.class)
 public static void provideBindings(
 MappedConfiguration<String, BindingFactory> cfg,

 @Named("PropBindingFactory")
 BindingFactory propBindingFactory,

 @Named("MessageBindingFactory")
 BindingFactory messageBindingFactor) {

 cfg.add(BindingConstants.PROP,
 propBindingFactory);
 cfg.add(BindingConstants.MESSAGE,
 messageBindingFactory);

 }

 ...
}

Scopes
By default, a JSR-330 injector creates an instance, uses the instance for one injection, and then forgets it. By placing the annotation you can tell @Scope
the injector to retain the instance for possible reuse in a later injection. If you want a service to be a singleton, you need to use the annotation.@Singleton

In Tapestry, it is exactly the other way around. By default a service is a singleton. Once an instance is created, it is reused for injection. Another available
scope is , which exists primarily to help multi-threaded servlet applications. If a service has scope, it is recreated for every incoming perthread perthread
request.

Logging in Tapestry IOC Operation Tracker

http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/Named.html
http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/Scope.html
http://atinject.googlecode.com/svn/trunk/javadoc/javax/inject/Singleton.html
https://cwiki.apache.org/confluence/display/TAPESTRY/Logging+in+Tapestry
https://cwiki.apache.org/confluence/display/TAPESTRY/Logging+in+Tapestry
https://cwiki.apache.org/confluence/display/TAPESTRY/IOC
https://cwiki.apache.org/confluence/display/TAPESTRY/IOC
https://cwiki.apache.org/confluence/display/TAPESTRY/Operation+Tracker
https://cwiki.apache.org/confluence/display/TAPESTRY/Operation+Tracker

	Using JSR 330 standard annotations

