
1.

2.

3.

4.

HdfsFutures
HDFS Futures
Below is a categorized list and descriptions of HDFS Future Features

Goal: HDFS for Production Use

Reliable and Secure: The file system is solid enough for user to feel comfortable to use in "production"
Availability and integrity of HDFS is good enough

Availability of NN and integrity of NN Data
Availability if the file data and its integrity

Secure
Access control - in 0.16
Secure authentication 0.19

Good Enough Performance: HDFS should not limit the scaling of the Grid and the utilization of the nodes in the Grid
Handle large number of files
Handle large number of clients
Low latency of HDFS operation - this will affect the utilization of the client nodes
High throughput of HDFS operations

Rich Enough FS Features for applications
e.g. append
e.g. good performance for random IO

Sufficient Operations and Management features to manage large 4K Cluster
Easy to configure, upgrade etc
BCP, snapshots, backups

Service Scaling

This means scaling the Name Service (aka Namenode) and the number of Datanodes that can be present in a HDFS system.

For scaling the Name service (Namenode), there are two main issues here

scaling the name space (i.e. the number of files and directories we can handle
scale the performance of the name service - i.e. its throughput and latency and in particular the number of concurrent clients

Improving one may improve the other.

E.g. moving Block map functionality to slave NNs will free up storage for Name entries
E.g. Paritioning name space can also improve performance of each NN slave

Summary of various options that scale name space and its performance (details below)

(Also see)ScaleNN_Sea_of_Options.pdf

Grow memory
Scales name space but not performance
Issue: GC and Java scaling for large memories

Read-only Replicas of NN
Scales performance but not namespace
Adds reliability and one of the steps towards HA

Partition Namespace statically: Multiple namespace volumes
Scales both
Retains HDFS’s design philosophy but need a simplified automounter and management of horizontal scaling of NN servers

A truly distributed name server that automatically partitions the namespace dynamically
Split function on NN (Namespace and Block maps)

scales name space x3, a little performance scaling
Page-in partial name space from disk (as in traditional FSs)

Scales namespace but not performance, unless multiple volumes

Scaling Name Service Throughput and Response Time

Distribute/Partition/Replicate the NN functionality across multiple computers
Read-only replicas of the name node

What is the ratio of Rs to Ws - get data from Simon
Note: RO replicas can be useful for the HA solution and for checkpoint rolling

Partition by function (also scales namespace and addressible storage space)
E.g. move block management and processing to slave NN.
E.g. move Replica management to slave NN

Partition by name space - ie different parts of the name space are handled by different NN (see below)
this helps in scaling the performance of NN and also the Name space scaling

https://cwiki.apache.org/confluence/download/attachments/120730108/ScaleNN_Sea_of_Options.pdf?version=1&modificationDate=1562668006000&api=v2

RPC and Timeout issues
When load spikes occur, the clients timeout and the spiral of death occurs
See Hadoop Protocol RPC

Higher concurrency in Namespace access (more sophisticated Namespace locking)
This is probably an issue only on NN restart, not during normal operation
Improving concurrency is hard since it will require redesign and testing

Better to do this when NN is being redesigned for other reasons.
Journaling and Sync

Benefits: improves latency, client utilization, less timeouts, greater throughput
Improve Remote syncs

Approach 1 - NVRM NFS file system - investigate this
Approach 2 - If flush on NFS pushes the data to the NFS server, this may be good eough if there is a local sync - investigate

Lazy syncs - need to investigate the benefit and cost (latency)
Delay the reply by a few milliseconds to take allow for more bunching of syncs
This increases the latency

NVRAM for journal

Async sysncs [No!!!]

reply as soon as memory is updated
This changes semantics

If it is good enough for Unix then isn't it good enough for HDFS?
For a single machine, its failure implies failure of client and fs *together*
In a distributed file system, there is partial failure; further more one expects HA'ed NN to not loose data

Move more functionality to data node
Distributed replica creation - not simple

Improve Block report processing HADOOP-2448
2K nodes mean a block report every 3 sec.

Currently: Each DN sends Full BR are sent as array of longs every hour. Initial BR has random backoff (configurable)
Incremental and Event based B-reports - HADOOP-1079

E.g when disk is lost. or blocks are deleted, etc
DN can determine what if anything has changed and send only of there are changes

Send only checksums
NN recalculates the checksum, OR has rolling checksum

Make intial block report's random backoff to be dynamicaly set via NN when DNs register. - HADOOP-2444

Scaling Namespace (i.e. number of files/dirs)

Since the name node stores block and name objects in memory, the size of the name space (and hence the number of files) is limited by amount of heap
memory. Currently a 14GB heap (ie 16GB machine) allows 60 million block and name objects. Hence if one has 2 blocks per file, then one is limited to 20
million files. This is a significant restriction for large clusters. Besides adding more memory, several options are listed below.

Partition/distribute Name node (will also help performance)

Several Options:

Statically Partition the namespace hierarchically and mount the volumes
In this scheme, there are multiple namespace volumes in a cluster.
All the name space volumes share the physical block storage (i.e. One storage pool)
Optionally All namespaces (ie volumes) are mounted at top level using an automounter like approach
A namepace can be explicitly mounted on to a node in another namename (a la mount in Posix)

Note the Cepf file system [ref] partitions automatically and mounts the partition

A truly distributed name service that partitions the namespace dynamically.
Only keep part of the namespace in memory.

This like a tradional file system where the entire namepsace is stored in secondary and page-in as needed.
Reduce accidental space growth - name space quotas

Name Service Availability (includes integrityof NN data, HA, etc)

Integrity of NN Image and Journal

Handling of incomplete transactions in journal on startup
Keep 2 generations of fsimage - checkpoint deamon is verifying the fsimage each time it creates the new one.
CRC- for fsimage and journal
Make the NN persistent data solid

add internal consistency counters - to detect bugs in our code
Num files, Num dirs, num blocks, sentenials between fields, strong lengths

Recycling of block-Ids - problems if old data nodes come back - fix has been deisgned
If failure in FSImage, recover from alternate fsimages
Versioning of NN persistent data (use jute)
Smart fsck

Bad entry in journal - ignore rest

https://issues.apache.org/jira/browse/HADOOP-2448/
https://issues.apache.org/jira/browse/HADOOP-1079/
https://issues.apache.org/jira/browse/HADOOP-2444/

Bad entry in journal - ignore only those remaining entry not effected (Hard)
If multiple journals, recover from the best one or merge the entries
NN has flag about whether to continue on such an error

Recreating NN data from DN will require fundamental changes in design

Faster Startup

Faster Block report processing (See above)
Reload FS Image faster

Restart and Failover

Automatic NN restart on NN failure (operations can add stander watchdog for this)
Hot standby & failover

Security: Authorization and ACLs

0.16 has access control with very weak authorization
Client side grabs OS user id and passes it to NN

Secure authorization 0.19
Service-level access control - ie which user can access the HDFS service (as opposed ACLs for specific files)

File Features

File data visible as flushed
Motivation: logging and tail -f

Currently if an open files is renamed or deleted, the client with the open file can get an exception
We are unlikely to fix this as keeping a list of open files on NN side is probably too expensive.

Growable Files
via atomic append with multiple writers
Via append with 1 writer Hadoop-1700

Truncate files
Use case for this?
note truncate and append needs to be designed together

Concatenate files
Here multiple files are concatenated by merging their block lists (ie not data is copied)
This will require support forvariable length block.
Reduces number of names but since # of blocks are same does not offer much name space scaling

Support multiple writers for log file
Alternatives
1 logging toolkit that adapts to Hadood

Logging is from within a single application
No changes needed to Hadoop
1 atomic appends takes care of that - overkill for logging??

Block view of files - a file is a list of block, can move block from one to another, have holes etc

File IO Performance

In memory checksum caching (full or partial) on Datanodes (What is this Sameer?)
Reduce CPU utilization on IO

Remove double buffering Hadoop-1702
Take advantage of send file

Random access performance Hadoop-2736

Namespace Features

Hardlinks (not realy needed)
Will need add file-ids to make this work

Symbolic links
Native mounts - mount Hadoop on Linux
Mount Hadoop as NFS
"Flat name" to file mapping

Idea is remove the notion of directories. This has the potential of helping us scale the NN
Main issue with this approach is that many of our applciations and users have a notion of a name space that they own. For example
many mapReduce jobs process all files in a directory; another user creating files in that directory can mess up the application.

Notion of a fileset - kind of like a directory, except that it cannot contain directories - under discussion - has potential to scale name node.

File Data Integrity (For NN see NN data integrity above)

Periodic data verification

http://issues.apache.org/jira/browse/HADOOP-1700/
http://issues.apache.org/jira/browse/HADOOP-1702/
http://issues.apache.org/jira/browse/HADOOP-2736/

Operations and Management Features

Improved Grid Configuration management
Put config in Zookeeper (would require that NN gets started with at least one instance)ZooKeeper
DNs can get most of their config from NN. The only DN specific config is the directories or the DN data blocks

Software version upgrades and version rollback P???
See Rpc Protocol Versioning

Rolling upgrade when we have HA

NN data rollback
this depends on keeping old fsImage/journals around
A startup parameter for this?
Need an advisory on how much data will be discarded so that operator can make an intelligent decision

Snapshots
We allow snapshots only when system is offline
Need live Snapshots
Subtree snapshots (rather then whole system)

Replica Management
Ensure that (R-1) racks for R replicas
FSCK shold warn that there aren't R-1 racks

Hadoop Protocol RPC

RPC Timeouts, Connection handling, Q handling, threading

When load spikes occur, the clients timeout and the spiral of death occurs
Remove Timeout, Instead Ping to detect server failures HADOOP-2188
Improve Connection handling, idle connections etc

Client-side recovery from NN restarts and faIlovers

HDFS client side (or just ?) should be able to recover from NN restarts and failovers MapRed

Versioning

Across clusters
Versioning of the Hadoop client protocol, server can deal with clients of different versions

The data types change frequently, fields added, deleted
Within cluster - between NN and DN

Multiple Language Support

Are all interfaces well defined/cleanup
Generate stubs automatically for Java, C, Python
Service IDL

Benchmarks and Performance Measurements

Where are the cycles going for data and name nodes?
For HDFS and Map-Reduce

Diagnosability

NN - what do we need here - log analysis?
DN - what do we need here?

Development Support

What do we need here?

Intercluster Features

HDFS supports access to remote grids/clusters through URIs

https://cwiki.apache.org/confluence/display/HADOOP2/ZooKeeper
http://issues.apache.org/jira/browse/HADOOP-2188/
#

Federation features - investigate
What else?

BCP support

Support for keeping data in sync across data-centers

Attachments

<<AttachList>>

	HdfsFutures

