
GumpDevelopment
Gump Development
Gump development is primarily in Python, see .GumpPython

Gump uses Python 2.3 or above.

Overview
Use pydoc to get a look at the classes.

In $GUMP/python, with $PYTHONPATH set (to), run pydoc:pwd

> python $PYTHON\lib\pydoc.py -p 1234 gump

then browse the WWW site (on) it generates to get class documentation.http://localhost:1234

Note: Currently an instance of pydoc runs on brutus:

Gump PyDoc

See also the code documentation at .GumpCode

Debugging
Gump uses the standard Python 'logging' package (bundled in 2.3). Typically the command line options of and turn this on. Gump code --debug --verbose
current uses a single log instance (not one per package/module).

Write to the log using log.debug()

A very useful feature in exception cases is the following, the exc_info=1 (there is no True in Pythong 2.2) logs a stack trace. The details object is often
informative also.

try:

...

except Exception, details:
log.error('Problems problems...' + str(details), \
exc_info=1)

Unit Testing
Unit tests (not yet converted to the real pyunit, a knock off but similar) are run using:

python gump/test/pyunit.py

One can run a single test (or set of tests) by passing a wildcarded (filename-like not regexp) expression. e.g. *Nag for all nag tests. This matches the
method (test) name, not test suite name.

Adding Unit Tests

First, create a sub-class of (in pyunit.py) and implement , and the and/or as with any other *unit style (e.g. UnitTestSuite ()init setUp() tearDown()
junit). Then create methods that either raise exceptions (if they fail) or use style methods (which raise exception when testXXX() self.assertXXX()
assertions fail).

Second (ugly) add a segment like like this to pyunit.py, to register the new suite:

 from gump.test.xxx import XXXTestSuite
 runner.addSuite(XXXTestSuite())

Basically, when pyunit runs it walks through all test suites attempting to match all methods to the provided pattern (or * for all) and when it testXXX()
finds them, it runs them (with run before/after). Any failure (exception) is caught and reported later.setUp() and tearDown()

Local Integration Testing

https://cwiki.apache.org/confluence/display/GUMP/GumpPython
http://localhost:1234
http://brutus.apache.org/gump/pydoc/
#

Note: This is closer to a unit test than an integration test, but might grow closer to the latter.

1) set or export the following:

GUMP_NO_CVS_UPDATE=true
GUMP_WORKSPACE=python\gump\test\resources\full1\mine [no trailing]Note: .xml

2) Edit the 'mine' (or whatever you call it) workspace (copy it from the workspace.xml in same directory):

<?xml version="1.0" ?>
<workspace name="Adam"
 basedir="F:\data\gump-ws"
 jardir="F:\data\gump-ws\jars"
 logdir="F:\data\gump-ws\log"
 pkgdir="F:\data\gum-ws\package"
 email="ajack@apache.org"
 mailserver="mail.try.sybase.com"
 mailinglist="ajack@apache.org"
 version="0.4">

 <property name="build.sysclasspath" value="only"/>
 <sysproperty name="build.clonevm" value="true"/>

 <profile href="profile.xml"/>

 <threads updaters="1" builders="0" />
 <nag to="ajack@apache.org" from="ajack@apache.org"/>

</workspace>

Note: Change the e-mail address, mailing list (bad name) and mail server to your own. Also, override nagging to oneself.

3) Run

With the above, going to Gump's root and typing ought perform a reasonable test run.gumpy

Note: Currently no aspect of the workspace is building (or even updating) but that can be worked on to improve it (w/ some creativity and/or help from
infr@).

Integration Testing
Go to the on brutus (or your own local full Gump) and run :test flavour

gumpy.sh -w ../minimal-workspace.xml ant [--debug]

to get a quick run. Once done, do:

gumpy.sh -w ../gump.xml all [--debug]

	GumpDevelopment

