
PennyToolLibrary
Penny Tool Library

Here are some tools that we have already developed using the Penny framework. Many of them are somewhat rudimentary and could be improved
(volunteers accepted!). Don't see the tool you were hoping to find? Build your own – it's easy! – see .PennyCreateYourOwnTool

name description how to run limitations

crash
investigat
or

Determine which record(s) might be causing
your pig script to crash.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.ci.Main
<pig_script> (pig_script = your pig script, e.g. foo.pig)

Narrows it down to a small set of records, but can't pinpoint the
exact record due to pipeline and partition parallelism.

row-level
integrity
alerts

Throw an alert if a particular field of a
particular intermediate data record contains
a NULL. (Should be easy to generalize to
arbitrary predicates by supplying a code
fragment that returns a boolean pass/no-
pass decision – anyone want to volunteer?)

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.ri.Main
<pig_script> <alias> <field#> (alias = pig script alias you want to
monitor, field# = field # to check for NULLs)

table-
level
integrity
alerts

Throw an alert if a particular intermediate
table (i.e. the set of records passing
between steps i and j) is too small. (Any
volunteers to generalize this to general
checks? Again, shouldn't be very hard.)

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.ti.Main
<pig_script> <alias> <minimum size>

data
samples

Print a few records from each intermediate
data set, as the pig script is running – allows
you to get a feel for the transformations
being performed, and do some basic sanity
checks.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.ds.Main
<pig_script>

data
histogram
s

Print a histogram of a particular field of a
particular intermediate data set.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.dh.Main
<pig_script> <alias> <field#> <min_val> <max_val>
<bucket_size>

forward
tracing

Trace a particular record as it flows through
the pig script and gets transformed by the
various steps.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.ft.Main
<pig_script> <alias> <field#> <value> (alias = alias from which
start forward tracing; field# = field to inspect to decide when to
trace a record; value = value that triggers tracing – e.g. if I set
alias=foo, field#=2, value=bar it will trace all records emitted by
script alias "foo" that have "bar" in field #2

Script must use positional notation for group-by keys (i.e.
instead of "group X by url" you have to write "group X by $2".
Currently does not support scripts that use JOIN or ORDER –
waiting on parsing support from Pig for those.

backward
tracing

Trace a particular record backward through
the pig script, to find out where it came from
(i.e. trace its "lineage" or "provenance").

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.bt.Main
query_analysis.pig <alias> <record> (alias = alias of record to
trace; record = record to trace, in quotes, e.g. "(texas,berets)")

Script must use positional notation for group-by keys (i.e.
instead of "group X by url" you have to write "group X by $2".
Currently does not support scripts that use JOIN or ORDER –
waiting on parsing support from Pig for those. Will not perform
well on large data sets. Can be improved by implementing an
initial "weak inversion" analysis phase – T.B.D.

golden
logic
testing

Compare a "golden" piece of logic (one that
you're pretty sure is correct) against the
logic performed by Pig, to see if there might
be a bug.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.gl.Main
<pig_script> <alias> <sample_rate> <golden_logic_class>
(sample_rate = what fraction of records to check;
golden_logic_class = your golden logic class, which must
implement the org.apache.pig.penny.apps.gl.GoldenLogic
interface)

Script must use positional notation for group-by keys (i.e.
instead of "group X by url" you have to write "group X by $2".
Currently does not support scripts that use JOIN or ORDER –
waiting on parsing support from Pig for those.

latency
alerts

Throw an alert if a given record takes much
longer to process than the average record.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.la.Main
<pig_script>

latency
profiling

Trace records as they flow through the pig
steps, and see how long it takes the record
to reach each step.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.lp.Main
<pig_script>

Script must use positional notation for group-by keys (i.e.
instead of "group X by url" you have to write "group X by $2".
Currently does not support scripts that use JOIN or ORDER –
waiting on parsing support from Pig for those.

overhead
profiling

Determine how much time is spent on each
step in your pig script.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.op.Main
<pig_script>

Currently only works on pig scripts that have a linear chain
structure (no joins or splits).

trial runs Run your pig script on a small sample of the
input data. Use this the first time you run a
new pig scripts to catch certain bugs quickly.

java -cp penny.jar:pig.jar org.apache.pig.penny.apps.tr.Main
<pig_script>

As your script runs, tasks will communicate back to Penny. For this to work, you will need to open port 33335 to your cluster on the machine where you ran
Penny.

https://cwiki.apache.org/confluence/display/PIG/PennyCreateYourOwnTool

	PennyToolLibrary

