
How JSF State Management works
{scrollbar}

How JSF State Management Works

Overview

StateManager manages state, but you, as an end-user, have to give it hints about what state needs to be kept. That's either via implementing Serializable
(and correct use of transient is part of implementing) or by implementing .Serializable StateHolder

Data is stored in two different ways in JSF: in scoped beans or in the component tree. The scope of scoped beans are hopefully self-explanatory. The
state of the components themselves are stored in the response, and then restored when a request arrives. This effectively gives data stored by the
components a "page" scope since they exist so long as the page doesn't change. Note that components store value bindings and method bindings (#{} – el
expressions) as string literals, so the backing beans they point to are not stored in the component tree at page scope.

Tomahawk has a component named <t:saveState> that allows you to store data (including entire backing beans) as part of the component tree, SaveState
effectively making the page-scoped (or more since you can preserve such values across pages. In JSF 2.0, a new scope called @ViewScope was added
to provide the same functionality as t:saveState. You still need to properly implement or on your backing beans.Serializable StateHolder

Backtracking

Note that is pluggable, so it's possible to implement your own alternatives to the standard state management. Thus you could implement a StateManager
strategy that allowed backtracking.

Another alternative to handling backtracking is to use client-side state saving and avoid the use of session-scoped data. This also requires resyncing any
other persisting backing stores (i.e. databases) when the page is reloaded.

{scrollbar}

	How JSF State Management works

