
1.
2.
3.
4.

HowToTest

Unit Testing
Preparation
Running all unit tests
Running pre-commit tests
Running a single unit test
Generating Code Coverage Numbers for Unit Tests

End-to-end Testing
How to Run e2e Tests

Running e2e in Local Mode
Running on EC2

How to Write an e2e Test

How To Test Pig
This document covers how to test Pig. It is intended for Pig developers who need to know how to test their work. It can also be used by Pig users who wish
to verify their instance of Pig.

Pig currently provides tools for two types of testing: unit testing and end-to-end testing.

Unit Testing

Unit tests are executed via JUnit. Currently, many "unit tests" are really end-to-end tests. We are in the process of changing this so that all of end-to-end
tests will be run by the e2e harness (see below). See for details.PigTestProposal

Preparation

Prior to running unit tests, make sure to set .umask 0022

We also see unit tests fail due to extended acl, so use to remove extended acl if applicable.setfacl -b

Running all unit tests

To run the unit tests do in the top level Pig directory. Currently this takes 8 hours to run. We intend to drive this to under five minutes. Until this ant test
is done it is not expected that contributors will run all these tests before submitting their patch.

Running pre-commit tests

You can also run to run true unit tests plus a few very basic end-to-end tests to assure nothing fundamental has been broken. ant clean test-commit
We ask that committers run this before committing patches, and that contributors run it before uploading their patch.

Running a single unit test

A single unit test can be run by setting the property. For example:testcase

ant -Dtestcase=TestRegisteredJarVisibility clean test

Generating Code Coverage Numbers for Unit Tests

Pig is integrated with clover, which can be used to measure code coverage of the unit tests. First, you will need to obtain clover:

Download clover from . You want Clover for Ant 2.6.3. The license from Apache doesn't work with the latest 3.x versions of Clover.Atlassian
Unzip clover somewhere on the machine where you will be doing the tests. We'll call this location $CLOVER_HOME
Download the from Apache. You must be an Apache committer to access this file.license file
Place the license file in $CLOVER_HOME/lib

Now, to run the unit tests with clover:

ant clean
ant -Dclover.home=<clover_home> -Drun.clover=true clover jar test
ant -Dclover.home=<clover_home> -Drun.clover=true generate-clover-reports
ant -Dclover.home=<clover_home> -Drun.clover=true generate-pdf-clover-reports

https://cwiki.apache.org/confluence/display/PIG/PigTestProposal
http://www.atlassian.com/software/clover/download-archives
https://svn.apache.org/repos/private/committers/donated-licenses/clover/2.6.x/clover.license

The detailed report is now available as a collection of HTML files under build/test/clover/reports
A summary report is now available in build/test/clover/pdf/reports/clover_coverage.pdf

End-to-end Testing

End-to-end tests (e2e) are run with a custom test harness. For information on this harness see . The goal of these tests is to test Pig TestHarnessDesign
on a real Hadoop cluster. These tests try to cover all functionality provided by Pig.

Currently running the entire suite of e2e tests takes about 10 hours. It is not expected that contributors committers will run all these tests before
contributing or committing a patch. They should run the Checkin tests, plus any tests they have added, plus tests that cover the area of changes they are
making. For example, if one was making a change to the merge join algorithm, he should run the Checkin tests plus the MergeJoin tests before uploading
and checking in his patch. These tests should be run in both cluster and local mode.

How to Run e2e Tests

Running the e2e tests requires three things: a cluster to run them on, an old version of Pig to use to generate expected results, and perl (plus a few CPAN
modules) on your client machine. The cluster can be quite small. A single machine will enough. Since performance is not the goal it is fine if this is a virtual
machine. If you do not have access to a cluster, see below for information on how to run the tests on EC2.

You will need the following CPAN modules:

IPC::Run
Parallel::ForkManager
DBI

For help installing CPAN modules, see .cpan module install instructions

Currently we are using Pig 0.8.1 for the old version of Pig that generates expected results. Once 0.9 is widely adopted we will likely switch to it as the
source of truth. You can download Pig 0.8.1 from .http://www.apache.org/dyn/closer.cgi/pig

If you are running in a secure Hadoop environment (with kerberos in use), you must do kinit to obtain a ticket before running ant. Otherwise your tests will
all fail to gain access to the cluster.

Before you can run the test harness against your cluster for the first time, you must generate the test data in your cluster. To do this, do:

ant -Dharness.old.pig=old_pig -Dharness.cluster.conf=hadoop_conf_dir -Dharness.cluster.bin=hadoop_script -
Dharness.hadoop.home=hadoop_home_dir test-e2e-deploy

Where is where you installed the old version of Pig, is the directory where your or old_pig hadoop_conf_dir hadoop-site.xml mapred-site.xml
file is, and is where your executable is located. For example, if you have installed Pig 0.8.1 in hadoop_script hadoop /usr/local/pig/pig-0.8.1
and Hadoop in , then your command line would look like:/usr/local/hadoop

ant -Dharness.old.pig=/usr/local/pig/pig-0.8.1 -Dharness.cluster.conf=/usr/local/hadoop/conf -Dharness.cluster.
bin=/usr/local/hadoop/bin/hadoop -Dharness.hadoop.home=hadoop_home_dir test-e2e-deploy

This takes a couple of minutes and only needs to be run once. After building Pig itself it will display information on the data it is generating.

Once you have loaded your cluster with data, you can run the tests by doing:

ant -Dharness.old.pig=old_pig -Dharness.cluster.conf=hadoop_conf_dir -Dharness.cluster.bin=hadoop_script -
Dharness.hadoop.home=hadoop_home_dir test-e2e

Run with instead of to run tests with Tez as execution engine.test-e2e-tez test-e2e

Running the full test suite is rarely what you want, as it takes around 10 hours. If you are running against a cluster with more capacity, you can speedup
the execution of the tests by parallelizing it. The property tells how many test conf files to run in parallel. The fork.factor.conf.file fork.factor.

 property tells how many groups to run in parallel within each test file. Within a group, each tests are run sequentially. For eg: group -Dfork.factor.
 will run 2 test files and 5 groups in each totaling 10 tests in parallel.conf.file=2 -Dfork.factor.group=5

To run only some tests, set the property. This value can be passed a group of tests (e.g. Checkin), or a single test (e.g. Checkin_1). You tests.to.run
can pass multiple tests or groups in this property. Each test or group of tests must be proceeded by a {{-t }}. For example, to run the Checkin tests and the
first MergeJoin test, do:

ant -Dharness.old.pig=old_pig -Dharness.cluster.conf=hadoop_conf_dir -Dharness.cluster.bin=hadoop_script -
Dharness.hadoop.home=hadoop_home_dir -Dtests.to.run="-t Checkin -t MergeJoin_1" test-e2e

Status will be provided as each test is run. Tests either succeed, fail, or abort. A test fails when actual results do not match expected results. A test aborts
when the test or expected results generation failed to execute. The harness prints out the path to the log file where details of the test run are provided.

#
http://www.cpan.org/modules/INSTALL.html
http://www.apache.org/dyn/closer.cgi/pig

1.
2.

3.

4.

If you want to clean the data off of your cluster, you can use the undeploy target:

ant -Dharness.old.pig=old_pig -Dharness.cluster.conf=hadoop_conf_dir -Dharness.cluster.bin=hadoop_script -
Dharness.hadoop.home=hadoop_home_dir test-e2e-undeploy

There is no need to do this on a regular basis.

If you want to generate a junit format xml file out of the e2e test log and use it for displaying test results in Jenkins, you can run test/e2e/harness/xmlReport.
pl against the log file.

 test/e2e/harness/xmlReport.pl testdist/out/log/test_harnesss_1411157020 > test-report.xml

Running e2e in Local Mode

End-to-end tests can also be run in local mode. While this is not a substitute for running them on a cluster, it is a good idea to run your tests in both cluster
and local mode to assure both modes work. Running in local mode is nearly identical to running cluster mode, except that the test data in local mode is
placed in a directory under the test harness. So you must generate the local mode data each time you are working in a different source tree or after doing
an .ant clean

To generate the test data in local mode, do:

ant -Dharness.old.pig=old_pig -Dharness.cluster.conf=hadoop_conf_dir -Dharness.cluster.bin=hadoop_script -
Dharness.hadoop.home=hadoop_home_dir test-e2e-deploy-local

(Yes you still have to give cluster information even though you aren't using a cluster. Pig doesn't use it in this case and you can pass bogus info if you
want.)

To run the local mode tests themselves, do:

ant -Dharness.old.pig=old_pig -Dharness.cluster.conf=hadoop_conf_dir -Dharness.cluster.bin=hadoop_script -
Dharness.hadoop.home=hadoop_home_dir test-e2e-local

Running on EC2

If you do not have access to a cluster you can run the tests in EC2. In the directory there are tools that will help you run on EC2.tests/e2e/pig/whirr

In the following text any value that starts is a value you should fill in.your_

Prerequisites:

An account in Amazon's AWS
An Amazon Access Key ID and Secret Access Key. These are not ssh keys. See http://aws-portal.amazon.com/gp/aws/developer/account/index.

 under Access Credentials. You need an Access Key.html?action=access-key
An RSA SSH key pair that is passphraseless. You may want to generate a pair just for use with the tool to avoid forcing your regular ssh key pair
to be passphraseless. They must be RSA; Whirr does not work with any of the other key types. You can generate a pair with the command ssh-

 where is the file to store the private key in.keygen -f your_private_rsa_key_file -t rsa -P '' your_private_rsa_key_file
Apache Whirr version 0.5 or newer.

To Start a Cluster:

export AWS_ACCESS_KEY_ID=your_amazon_access_key
export AWS_SECRET_ACCESS_KEY=your_secret_amazon_access_key
export SSH_PRIVATE_KEY_FILE=your_private_rsa_key_file
cd your_path_to_apache_whirr/bin
./whirr launch-cluster --config your_path_to_pig_trunk/test/e2e/pig/whirr/pigtest.properties

This will take ~5 minutes and spew various messages on your screen.

DO NOT FORGET TO SHUTDOWN YOUR CLUSTER (see below) (unless you think Amazon a worthy cause and wish to donate your extra cash to them).

Running the tests:
Open the file and find the line that has . The next line should have the hostname that ~/.whirr/pigtest/hadoop-site.xml mapred.job.tracker
is running your Job Tracker. Copy that host name, but NOT the port numbers (ie the where is or something similar). This value will be :nnnn nnnn 9001
referred to as .your_namenode

http://aws.amazon.com/
http://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key
http://aws-portal.amazon.com/gp/aws/developer/account/index.html?action=access-key
http://incubator.apache.org/whirr/

cd your_path_to_pig_src
scp -i your_private_rsa_key_file test/e2e/pig/whirr/whirr_test_patch.sh your_namenode:~

if you have a patch you want to run
 scp -i your_private_rsa_key_file your_patch your_namenode:~

ssh -i your_private_rsa_key_file your_namenode

Now you can run to run some or all of the tests against trunk or against your patch. To run all the tests against trunk, do whirr_test_patch .
/whirr_test_patch.sh

To apply your patch and then run the tests, do ./whirr_test_patch.sh -p your_patch

To run just some of the tests, do where is a test or group of tests you ./whirr_test_patch.sh -t test_group_or_name test_group_or_name
want to run. Multiple -t options can be passed.

whirr_test_patch is not idempotent. It downloads necessary packages, checks out trunk, applies your patch if appropriate, and generates the test data
and loads into your cluster. Once you have successfully run it once, you should not run it again. If you wish to do additional testing and cd src/trunk
run the end-to-end tests via ant as you normally would.

Initial setup takes around 5 minutes. Running all of the nightly tests currently (August 2011) takes about 10 hours. When you are just testing a patch for
submission your are not expected to run the full suite of tests. Checkin, plus any tests you've added, plus all that cover the area of your change is sufficient.

Shutting down your cluster:
In the same shell you started the cluster:

./whirr destroy-cluster --config your_path_to_pig_trunk/test/e2e/pig/whirr/pigtest.properties

How to Write an e2e Test

Writing a new e2e test does not require writing any new Java code (assuming you don't need to write a UDF for your job). The e2e test harness is written
in Perl, and the tests are stored in .conf files, each of which is one big Perl hash (if you squint just right, it almost looks like JSON). These files are in test

. This hash is expected to have a key, which is an array. Each element in the array describes a collection of tests, usually /e2e/pig/tests/ groups
oriented around a particular feature. For example the group tests boolean predicates in filters. Every group in the array is a hash. It must FilterBoolean
have and a keys. is expected to be an array of tests. Each test is again a hash, and must have a , the test number and , the name tests tests num pig
Pig Latin code to run. As an example look at the following, taken from :nightly.conf

$cfg = {
 'driver' => 'Pig',

 'groups' => [
 {
 'name' => 'Checkin',
 'tests' => [
 {
 'num' => 1,
 'pig' => q\a = load ':INPATH:/singlefile/studenttab10k' as (name, age, gpa);
 store a into ':OUTPATH:';\,
 },
 {
 'num' => 2,
 'pig' => q\a = load ':INPATH:/singlefile/studenttab10k' as (name, age, gpa);
 b = load ':INPATH:/singlefile/votertab10k' as (name, age, registration,
contributions);
 c = filter a by age < 50;
 d = filter b by age < 50;
 e = cogroup c by (name, age), d by (name, age) ;
 f = foreach e generate flatten(c), flatten(d);
 g = group f by registration;
 h = foreach g generate group, SUM(f.d::contributions);
 i = order h by $1;
 store i into ':OUTPATH:';\,
 'sortArgs' => ['-t', ' ', '+1', '-2'],
 }
]
 },
 {
 'name' => 'LoaderPigStorageArg',
 'tests' => [
 {
 'num' => 1,
 'pig' => q\a = load ':INPATH:/singlefile/studentcolon10k' using PigStorage(':') as (name,
age, gpa);
 store a into ':OUTPATH:';\,
 },
]
 }
]
};

This has two groups and . has two tests.Checkin LoaderPigStorageArg Checkin

In these simple cases the test harness runs the specified Pig Latin and generates a result. It then runs the same script against the version of Pig you
specified as old (we are currently using Pig 0.8.1 in our nightly tests) and generates an expected result. These two results are then sorted and an md5
checksum taken. If this matches, the test is declared to have succeeded, otherwise, it failed.

For tests where sort order is important (as in above), you can check that data is sorted using the Unix utility. This is done by passing an Checkin_2 sort
array of the arguments for . is then invoked before the harness sorts the data for comparison to the expected results to see if the data is sorted sort sort
as specified. The given above says to use tab as a delimiter and check that the output is sorted on the second (or first if you count from zero) sortArgs
field. See 's man page for details.sort

For features that are new, you cannot test against old versions of Pig. For example, macros in 0.9 cannot be tested against 0.8.1. As an alternate to
running the same Pig Latin script against an old version, you can run a different script. This script will be run using the current version, not the old one. To
specify a different script, you need a key . For example:verify_pig_script

 {
 # simple macro, no args
 'num' => 1,
 'pig' => q#define simple_macro() returns void {
 a = load ':INPATH:/singlefile/studenttab10k' as (name, age, gpa);
 b = foreach a generate age, name;
 store b into ':OUTPATH:';
 }

 simple_macro();#,
 'verify_pig_script' => q#a = load ':INPATH:/singlefile/studenttab10k' as (name, age, gpa);
 b = foreach a generate age, name;
 store b into ':OUTPATH:';#,
 }

Some tests need to check that Pig outputs correct errors messages, returns correct codes, etc. These tests can define , expected_err_regex execpted
, , or . The first four search or for the provided regular _out_regex not_expected_out_regex not_expected_err_regex rc stderr stdout

expression (or lack thereof in the not cases). The last checks the return code against the provided value. Success or failure of the test is determined by
whether these regular expressions or returns codes match. When these tags are present no expected results are generated via an old version of Pig or an
alternate Pig Latin script.

An exhaustive list of keys supported in the test hash:

Key What it Does Example Required?

delimit
er

Provides with delimiter to usefloatpostprocess 'delimiter' => ':' Only with flost
postprocess

execo
nly

This test will only be executed in specified mode; options are and local mapred 'execonly' => 'mapred' No

expect
ed_err
_regex

Checks stderr error for the provided regular expression 'expected_err_regex' => "Out of bound
access."

No

expect
ed_out
_regex

Checks stdout error for the provided regular expression 'expected_out_regex' => "A: {name:
bytearray,age: bytearray,gpa:
bytearray}"

No

floatpo
stproc
ess

Run floating point numbers through a post processor, since due to precision issues
different runs of the same script will produce slightly different values. All floating point
numbers are rounded to 3 decimal places. This must be used in conjunction with deli
miter

'floatpostprocess' => 1 For outputs that
include
calculated
floating point
values.

ignore Do not run this test, used when a test is failing but we don't want to remove it because
it will be needed once the issue is fixed. A reason for ignoring the test should be given.

'ignore' => 'JIRA-19999' No

java_p
arams

Values to be passed on the command line before other Pig parameters; useful for pig
passing properties.

'java_params' => ['-Dpig.cachedbag.
memusage=0']

No

not_ex
pected
_err_r
egex

Checks that stderr does not match the provided regular expression 'not_expected_err_regex' => "ERROR" No

not_ex
pected
_out_r
egex

Checks that stdout does not match the provided regular expression 'not_expected_out_regex' => "datafile" No

notmq Tells the test harness this is not a multi-query test; only necessary when a test has
multiple operators but should not be verified as if it were multi-query.store

'notmq' => 1 No

num Test number; must be unique in the test group 'num' => 1 Yes

pig The Pig Latin script to run in the test q#a = load ':INPATH:/dir
/studenttab10k' as (name, age, gpa);
store a into ':OUTPATH:';#

Yes

pig_pa
rams

Command line arguments to pass to when running this test.pig 'pig_params' => ['-p', qq
(fname='studenttab10k')]

No

rc Expected return code 'rc' => 0 No

sortAr
gs

Arguments to pass to the Unix utility. When these are given, sort will be called sort
before data is sorted for comparison with the expected results.

'sortArgs' => ['-t', ' ', '+0', '-1'] Only when job
output should
be sorted

verify_
pig_sc
ript

Alternate Pig Latin script to use to generate the expected results 'verify_pig_script' => q\A = load ':
INPATH:/singlefile/studenttab10k' as
(name, age, gpa); store A into ':
OUTPATH:';\,

No

Almost all test Pig Latin scripts need to make references to file paths. Rather than hardwire these paths in the tests, variables are provided. Whenever
referencing paths in your scripts you should use these variables. The following table describes the most commonly used variables:

Variable Used For Example

:FUNCPATH: Location of test UDF jars constructed by the test harness register :FUNCPATH:/testudf.jar;

:
HADOOPHOM
E:

Location where MapReduce jars used for testing the mapr
 operator are kepteduce

b = mapreduce ':HADOOPHOME:/hadoop-examples.jar'

:INPATH: The path where Pig test data is stored a = load ':INPATH:/singlefile/studenttab10k'

:OUTPATH: The path where Pig will write the results of a test store a into ':OUTPATH:';

:
SCRIPTHOME
PATH:

Location external script modules (e.g. Python) are kept register ':SCRIPTHOMEPATH:/python/scriptingudf.py'
using jython as myfuncs;

:TMP: Temporary directory specific to a given test, can be used
to store temporary files

pig_script = ":TMP:/script.pig"

The following files contain tests, and are located in :test/e2e/pig/nightly

conf File Tests Comments

bigdata.conf larger size data We keep these to a minimum as they take much longer than other
tests.

cmdline.conf Pig command line output (such as describe)

grunt.conf grunt operators, like ls

macro.conf macro and import

multiquery.conf multiquery scripts

negative.conf negative conditions where Pig is expected to return an
error

nightly.conf general positive tests Your test goes here if it doesn't fit anywhere else

orc.conf OrcStorage tests

streaming.conf streaming feature

streaming_local.
conf

streaming feature in local mode

turing_jython.conf Pig scripts embedded in Python scripts

When writing new tests, if a group already exists that tests the functionality you are testing, add your tests to that group. There is a group for Regression
tests that check bug fixes. If you are writing a new feature or writing tests for a previously un-tested feature, create a new group. When creating new
groups, try to place it in an existing conf file that contains related tests. If you are creating a feature that will require many tests and multiple groups of
tests, such as support for embedding Pig in a new language, create a new conf file for those tests.

	HowToTest

