
ScopedLocking
Always use scoped lockers to lock mutexes and the like. Don't do this:

 lock.acquire();
 do_stuff(); // DANGER: lock never released if exception thrown here.
 lock.release();

Instead use a "scoped locker". This is simply a class that does the "acquire" in its constructor and the "release" in its destructor:

 Locker locker(lock);
 do_stuff();

Not only does this save a bit of typing, it guarantees that the lock will be released even if an exception is thrown, because C++ guarantees to call
destructors of all local variables on exit from a scope. This also protects you forgetting to release the lock at every exit point from a function with multiple
exit points - the compiler takes care of it for you. This technique applies more generally to any situation where you have to acquire and release resources. s

 is a similar tool for memory management.td::auto_ptr

	ScopedLocking

