
ClusteringAndFederation
Clustering And Federation
Each diagram below depicts a distributed network of exchanges and queues. The following notation is used in all diagrams:

M: message
E: exchange
Q: queue

Multicast

 M1...Mn
 +--------> Q
 |
 | M1...Mn
 M1...Mn ---> E----+--------> Q
 |
 | M1...Mn
 +--------> Q

Queue contents are duplicated across all queues. For this scenario PGM
would be ideal between E and Q, or even directly between E and
consumers.

Load Balancing

 M1
 +--------> Q
 |
 | ...
 M1...Mn ---> E----+--------> Q
 |
 | Mn
 +--------> Q

No ordering is guaranteed accross different queues. A naive
implementation could just be an exchange doing round-robin routing or
any algorithm of choice. A more complicated exchange could have flow
control between each queue and the exchange.

Multiple Exchanges

 M? ---> E1-----+ +-----> Q1
 | |
 | (n*m arrows) |
 M? ---> E2-----+--------------+-----> Q2
 | |
 | |
 M? ---> En-----+ +-----> Qm

Both the Load Balancing and Multicast scenarios can be extended by
adding multiple exchange nodes wired into the same (or an overlapping)
set of queues. One virtual mega exchange (with relaxed ordering
semantics) could be created by segmenting client connections between
exchanges. This could be done using a number of strategies, e.g.
round-robin dns, name mangling, redirects.

The topologies described above could in theory be use in a variety of
scenarios ranging from an an isolated high speed subnet with
identically configured nodes to a loosely coupled WAN with separately
administered nodes. In fact a single network could include exchanges
bound to local queues, remote queues available on an isolated high
speed subnet, and remote destinations (exchange or queue) available
over WAN/internet. In the last case the exchange may be requred to
queue messages routed to the remote destination if the WAN/internet
link is down.

In the terminology I've been using, a cluster is a set of machines
sharing the same software and configuration, and generally connected
via an isolated high speed subnet. A federation on the other hand
consists of distinctly configured machines individually wired
together. Both clustering and federation share a commoncould
protocol for message delivery. This could possibly even be used for
multicast if it were a simple stateless store-and-forward protocol.
(Note the "store" in "store-and-forward" can mean both store on disk
and store in memory.)

With this model the key distinction between a cluster and a federation
is that all the nodes in a cluster are managed as a single unit, e.g.
one place to start/stop/add/remove/etc. Because of this the nodes in a
cluster have to pass control messages to each other distinct from the
general message traffic. These control messages need to be isolated
from the general message traffic (e.g. on their own subnet). This
could be done using JGroups and OpenAIS for Java and C++ respectively.

This document doesn't directly address fault tolerance, but it is
assumed that any node/broker that contains state can be configured to
have a passive counterpart that supports two methodologies for
failover. Broker swapout based on virtual IP, or client reconnect to a
backup IP.

	ClusteringAndFederation

