HowToUselnjectionFramework

How to use injection framework

This page will be getting more details about Hadoop development and testing using AspectJ based Injection Framework.

Introduction

The idea of code injection is fairly simple: it is an infusion of new or modification of existing behavior into a code of a software application. Fault Injection,
which will be discussed later, is a similar mechanism for adding errors and exceptions into an application's logic to achieve a higher coverage and fault
tolerance of the system. Different implementations of this idea are available today. Hadoop's inject framework is built on top of Aspect Oriented Paradigm
(AOP) implemented on top of AspectJ toolkit.

The document below relates to injection technique with regards to code/behavior modifications and to injection of programmatic faults (fault-injection). I'll
refer to both injection and fault injection aspects of the framework unless narrower cases are explicitly mentioned.

Assumptions

For the sake of production code clearness and to avoid undesirable effects an instrumented code is kept separate from production code. A set of extra
build target is used to produced injection related artifacts. They are easily distinguishable by '-fi' suffix as in '‘Framework Injection’ (not to confuse with 'if'
keyword of many programming languages).

The current implementation of the FI framework assumes that the faults it will be emulating are of non-deterministic nature. That is, the moment of a fault's
happening isn't known in advance and is a coin-flip based.

Architecture of the Injection Framework

System properties)

Config
management

Probability Model

boolean getinjé

Embedded Faults

Configuration Management

Currently only configuration for injected faults is available. Configuration management allows you to set expectations for faults to happen. The settings can
be applied either statically (in advance) or in runtime. The desired level of faults in the framework can be configured two ways:

® editing src/ aop/ fi-site.xm configuration file. This file is similar to other Hadoop's config files
® setting system properties of JVM through VM startup parameters or in bui | d. properti es file

Probability Model

This is essentially a coin flipper to regulate faults occurrence. The methods of this class are getting a random number between 0. 0 and 1. 0 and then
checking if a new number has happened to be in the range of 0. 0 and a configured level for the fault in question. If that condition is true then the fault will
occur.

Thus, to guarantee the happening of a fault one needs to set an appropriate level to 1. 0. To completely prevent a fault from happening its probability level
has to be set to 0. 0. The default probability level is set to 0 unless the level is changed explicitly through the configuration file or in the runtime. The name
of the default level's configuration parameteris fi . *

Injection mechanism: AOP and AspectJ
The foundation of Hadoop's Fl includes a cross-cutting concept implemented by AspectJ. The following basic terms are important to remember:

® A cross-cutting concept (aspect) is behavior, and often data, that is used across the scope of a piece of software
® In AOP, the aspects provide a mechanism by which a cross-cutting concern can be specified in a modular way
® Advice is the code that is executed when an aspect is invoked

® Join point (or pointcut) is a specific point within the application that may or not invoke some advice

Predefined Join Points
The following readily available join points are provided by AspectJ:

when a method is called

during a method's execution
when a constructor is invoked
during a constructor's execution
during aspect advice execution
before an object is initialized
during object initialization
during static initializer execution
when a class's field is referenced
when a class's field is assigned
when a handler is executed

Aspect Example

This is fault injection example:

package org. apache. hadoop. hdf s. server. dat anode;

i nport org. apache. commons. | oggi ng. Log;

i mport org.apache. commons. | oggi ng. LogFact ory;

i mport org.apache. hadoop. fi. ProbabilityMdel;

i mport org. apache. hadoop. hdf s. server. dat anode. Dat aNode;
i mport org. apache. hadoop. util . Di skChecker. *;

import java.io.|CException;
inport java.io.CQutputStream
i nport java.io.DataQutput Stream

/**
* This aspect takes care about faults injected into datanode. Bl ockRecei ver
* cl ass
*/
public aspect Bl ockRecei verAspects {
public static final Log LOG = LogFactory. get Log(Bl ockRecei ver Aspects. cl ass);

public static final String BLOCK_RECElI VER FAULT="hdfs. dat anode. Bl ockRecei ver";
poi ntcut cal | Recei vePacket () : call (* QutputStreamwite(..))
wi t hi ncode (* Bl ockRecei ver.receivePacket(..))
/1 to further linmt the application of this aspect a very narrow 'target' can be used as follows
/] target (DataCutput Stream
!'wi t hi n(Bl ockRecei ver Aspects +);

before () throws | OException : call Recei vePacket () {
if (ProbabilityMdel.injectCriteria(BLOCK RECEI VER FAULT)) {
LOG i nfo("Before the injection point");
Thr ead. dunpSt ack() ;
throw new D skQut OF SpaceException ("FI: injected fault point at " +
t hi sJoi nPoi nt. getStaticPart().getSourceLocation());

The aspect has two main parts:

® The join point poi nt cut cal | Recei vepacket () which servers as an identification mark of a specific point (in control and/or data flow) in the

life of an application.
® Acall to the advice - before () throws | OException : call Recei vepacket () - will be injected (see Putting It All Together below)
before that specific spot of the application's code.

The pointcut identifies an invocation of class'j ava. i 0. Qut put Stream wri t e() method with any number of parameters and any return type. This
invoke should take place within the body of method r ecei vepacket () from class Bl ockRecei ver . The method can have any parameters and any
return type. Possible invocations of wri t e() method happening anywhere within the aspect Bl ockRecei ver Aspect s or its heirs will be ignored.

Note 1: This short example doesn't illustrate the fact that you can have more than a single injection point per class. In such a case the names of the faults
have to be different if a developer wants to trigger them separately.

Note 2: After the injection step (see Pultting It All Together below) you can verify that the faults were properly injected by searching for aj ¢ keywords in a
disassembled class file.

Here's code injection example

package org. apache. hadoop. security;

inport java.io.ByteArrayl nput Stream
i mport java.io.Datal nput Stream
import java.io.|CException;

i mport org.apache. hadoop.io. WitableUtils;

privil eged aspect AccessTokenHandl er Aspects {
/** check if a token is expired. for unit test only.
* return true when token is expired, false otherw se */
static bool ean AccessTokenHandl er.i sTokenExpi red(AccessToken token) throws | OException {
Byt eArrayl nput Stream buf = new Byt eArrayl nput St rean(t oken. get Tokenl ()
.getBytes());
Dat al nput Stream i n = new Dat al nput St rean(buf);
long expiryDate = WitableUtils.readVLong(in);
return i sExpired(expiryDate);
}

/** set token lifetime. for unit test only */
synchroni zed voi d AccessTokenHandl er. set TokenLi feti me(l ong tokenLifetine) {
this.tokenLifetine = tokenLifetine;

}
}

The great thing about this is the fact that injected methods needed for a testing will exist in an instrumented build only and will never pollute the production
code.

Fault Naming Convention and Namespaces
For the sake of a unified naming convention the following two types of names are recommended for a new aspects development:

® Activity specific notation (when we don't care about a particular location of a fault's happening). In this case the name of the fault is rather abstract
fi.hdfs.Di skError

® Location specific notation. Here, the fault's name is mnemonic as in fi . hdf s. dat anode. Bl ockRecei ver[opti onal |ocation detail s]

Development Tools

® The Eclipse AspectJ Development Toolkit may help you when developing aspects
® IntelliJ IDEA provides Aspect] weaver and Spring-AOP plugins

Putting It All Together
Aspects (faults) have to injected or woven into the code before they can be used. Follow these instructions:

® To weave aspects in place use:

% ant injectfaults

® |f you misidentified the join point of your aspect you will see a warning (similar to the one shown here) when 'injectfaults’ target is completed:

[iajc] warning at
src/test/aop/ or g/ apache/ hadoop/ hdf s/ server/ dat anode/ \
Bl ockRecei ver Aspects. aj:44::0
advi ce defined in org. apache. hadoop. hdf s. server. dat anode. Bl ockRecei ver Aspect s
has not been applied [Xl int:adviceD dNot Mat ch]

It isn't an error from AspectJ point of view, however Hadoop's build will fail to preserve the integrity of the source code.

® To prepare dev.jar file with all your faults weaved in place use:

http://www.eclipse.org/ajdt/

% ant jar-faul t-inject

® To create test jars use:

% ant jar-test-fault-inject

® To run HDFS tests with faults injected use:

% ant run-test-hdfs-fault-inject

How to Use the Fault Injection Framework
Faults can be triggered as follows:

® During runtime:

% ant run-test-hdfs -Dfi.hdfs.datanode. Bl ockRecei ver=0. 12

To set a certain level, for example 25%, of all injected faults use:

% ant run-test-hdfs-fault-inject -Dfi.*=0.25

® From a program:

package org. apache. hadoop. fs;

import org.junit. Test;
inport org.junit.Before;
inmport org.junit.After;

public class DenpFi Test {
public static final String BLOCK_RECElI VER FAULT="hdfs. dat anode. Bl ockRecei ver";
@verride
@Before
public void setUp(){
//Setting up the test's environnent as required

}

@est
public void testFI() {
/1 It triggers the fault, assuming that there's one called 'hdfs. datanode. Bl ockRecei ver'
System set Property("fi." + BLOCK_RECEI VER_FAULT, "0.12");
Il
/1 The main logic of your tests goes here
11
/1 Now set the |evel back to O (zero) to prevent this fault from happening again
System set Property("fi." + BLOCK RECEI VER FAULT, "0.0");
/1 or delete its trigger conpletely
System get Properties().remove("fi." + BLOCK RECEI VER_FAULT);

}

@verride
@\fter
public void tearDown() {
/1 d eaning up test test environnment
}
}

As you can see above these two methods do the same thing. They are setting the probability level of hdf s. dat anode. Bl ockRecei ver at 12%. The
difference, however, is that the program provides more flexibility and allows you to turn a fault off when a test no longer needs it.

It should be clear that random faults aren't the only possible usage scenario of fault injection. Faults might be initialized by other means as well, i.e. setting
certain static variables; instantiation of some objects, etc.

Couple of hints

Eclipse provides very convenient environment for AspectJ development. However, as everything with Eclipse, it has some issues. Here's three simple
steps how to make your project Aspect] aware:

® Using project property convert it to AspectJ project
® Re-insert 'Ant builder' as explained in EclipseEnvironment
® Close and re-open open the project

After that you suppose to have type completion, syntax highlighting, and cross-references working for both .java and .aj files.

Additional Information and Contacts
These two sources of information are particularly interesting and worth reading:

® http://www.eclipse.org/aspectj/doc/next/devguide/
® AspectJ Cookbook (ISBN-13: 978-0-596-00654-9)

If you have additional comments or questions for the author check HDFS-435.

Recent presentation (2/11/2011) about code and fault injection could be found here. Here are the slides

https://cwiki.apache.org/confluence/display/HADOOP2/EclipseEnvironment
http://www.eclipse.org/aspectj/doc/next/devguide
http://issues.apache.org/jira/browse/HDFS-435
http://blip.tv/file/4761432/
http://www.scribd.com/doc/48819575/Hadoop-injection

	HowToUseInjectionFramework

