
Security

Security tips
Restrict access to the Config Browser
Don't mix different access levels in the same namespace
Never expose JSP files directly
Disable devMode
Reduce logging level
Use UTF-8 encoding
Do not define setters when not needed
Do not use incoming values as an input for localisation logic

Internal security mechanism
Accessing static methods
OGNL is used to call action's methods
Accepted / Excluded patterns
Strict Method Invocation

Security tips

The Apache Struts 2 doesn't provide any security mechanism - it is just a pure web framework. Below are few tips you should consider during application
development with the Apache Struts 2.

Restrict access to the Config Browser

Config Browser Plugin exposes internal configuration and should be used only during development phase. If you must use it on production site, we strictly
recommend restricting access to it - you can use Basic Authentication or any other security mechanism (e.g.)Apache Shiro

Don't mix different access levels in the same namespace

Very often access to different resources is controlled based on URL patterns, see snippet below. Because of that you cannot mix actions with different
security levels in the same namespace. Always group actions in one namespace by security level.

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>admin</web-resource-name>
 <url-pattern>/secure/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>

Never expose JSP files directly

You must always hide JSP file behind an action, you cannot allow for direct access to the JSP files as this can leads to unpredictable security
vulnerabilities. You can achieve this by putting all your JSP files under the folder - most of the JEE containers restrict access to files placed WEB-INF
under the folder. Second option is to add security constraint to the file:WEB-INF web.xml

THIS PAGE IS DEPRECATED, PLEASE FOLLOW THE LINK TO THE NEW SECURITY GUIDE!

http://struts.apache.org/security/

https://cwiki.apache.org/confluence/display/WW/Config+Browser+Plugin
http://shiro.apache.org/
http://struts.apache.org/security/

<!-- Restricts access to pure JSP files - access available only via Struts action -->
<security-constraint>
 <display-name>No direct JSP access</display-name>
 <web-resource-collection>
 <web-resource-name>No-JSP</web-resource-name>
 <url-pattern>*.jsp</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>no-users</role-name>
 </auth-constraint>
</security-constraint>

<security-role>
 <description>Don't assign users to this role</description>
 <role-name>no-users</role-name>
</security-role>

The best approach is to used the both solutions.

Disable devMode

The is a very useful option during development time, allowing for deep introspection and debugging into you app.devMode

However, in production it exposes your application to be presenting too many informations on application's internals or to evaluating risky parameter
expressions. Please before deploying your application to a production environment. While it is disabled by default, your always disable devMode struts.

 might include a line setting it to . The best way is to ensure the following setting is applied to our for production deployment:xml true struts.xml

Reduce logging level

It's a good practice to reduce logging level from to or less. Framework's classes can produce a lot of logging entries which will pollute the DEBUG INFO
log file. You can even set logging level to for classes that belongs to the framework, see example Log4j2 configuration:WARN

<?xml version="1.0" encoding="UTF-8"?>
<Configuration>
 <Appenders>
 <Console name="STDOUT" target="SYSTEM_OUT">
 <PatternLayout pattern="%d %-5p [%t] %C{2} (%F:%L) - %m%n"/>
 </Console>
 </Appenders>
 <Loggers>
 <Logger name="com.opensymphony.xwork2" level="warn"/>
 <Logger name="org.apache.struts2" level="warn"/>
 <Root level="info">
 <AppenderRef ref="STDOUT"/>
 </Root>
 </Loggers>
</Configuration>

Use UTF-8 encoding

Always use encoding when building an application with the Apache Struts 2, when using JSPs please add the following header to each JSP fileUTF-8

<%@ page contentType="text/html; charset=UTF-8" %>

Do not define setters when not needed

You should carefully design your actions without exposing anything via setters and getters, thus can leads to potential security vulnerabilities. Any action's
setter can be used to set incoming untrusted user's value which can contain suspicious expression. Some Struts s automatically populate params Result
based on values in (action in most cases is the root) which means incoming value will be evaluated as an expression during this process.ValueStack

Do not use incoming values as an input for localisation logic

How to disable devMode in production

<constant name="struts.devMode" value="false"/>

All 's methods (e.g in) perform evaluation of parameters included in a message to properly localize the TextProvider getText(...) ActionSupport
text. This means using incoming request parameters with methods is potentially dangerous and should be avoided. See example below, getText(...)
assuming that an action implements getter and setter for property , the below code allows inject an OGNL expression:message

public String execute() throws Exception {
 setMessage(getText(getMessage()));
 return SUCCESS;
}

Never use value of incoming request parameter as part of your localisation logic.

Internal security mechanism

The Apache Struts 2 contains internal security manager which blocks access to particular classes and Java packages - it's a OGNL-wide mechanism
which means it affects any aspect of the framework ie. incoming parameters, expressions used in JSPs, etc.

There are three options that can be used to configure excluded packages and classes:

struts.excludedClasses - comma-separated list of excluded classes
struts.excludedPackageNamePatterns - patterns used to exclude packages based on RegEx - this option is slower than simple string
comparison but it's more flexible
struts.excludedPackageNames - comma-separated list of excluded packages, it is used with simple string comparison via and startWith e
quals

The defaults are as follow:

<constant name="struts.excludedClasses"
 value="com.opensymphony.xwork2.ActionContext" />

<!-- this must be valid regex, each '.' in package name must be escaped! -->
<!-- it's more flexible but slower than simple string comparison -->
<!-- constant name="struts.excludedPackageNamePatterns" value="^java\.lang\..*,^ognl.*,^(?!javax\.servlet\..+)
(javax\..+)" / -->

<!-- this is simpler version of the above used with string comparison -->
<constant name="struts.excludedPackageNames" value="java.lang,ognl,javax" />

Any expression or target which evaluates to one of these will be blocked and you see a WARN in logs:

[WARNING] Target class [class example.MyBean] or declaring class of member type [public example.MyBean()] are
excluded!

In that case was used to create a new instance of class (inside JSP) - it's blocked because of such expression is evaluated to new MyBean() target jav
a.lang.Class

Accessing static methods

OGNL is used to call action's methods

This can impact actions which have large inheritance hierarchy and use the same method's name throughout the hierarchy, this was reported as an issue
. See the example below:WW-4405

It is possible to redefine the above constants in but try to avoid this and rather change design of your application!struts.xml

Support for accessing static methods from expression will be disabled soon, please consider re-factoring your application to avoid further
problems! Please check .WW-4348

https://issues.apache.org/jira/browse/WW-4405
https://issues.apache.org/jira/browse/WW-4348

public class RealAction extends BaseAction {
 @Action("save")
 public String save() throws Exception {
 super.save();
 return SUCCESS;
 }
}

public class BaseAction extends AbstractAction {
 public String save() throws Exception {
 save(Double.MAX_VALUE);
 return SUCCESS;
 }
}

public abstract class AbstractAction extends ActionSupport {
 protected void save(Double val) {
 // some logic
 }
}

In such case OGNL cannot properly map which method to call when request is coming. This is do the OGNL limitation. To solve the problem don't use the
same method's names through the hierarchy, you can simply change the action's method from to and leaving annotation as is to save() saveAction()

allow call this action via /save.action request.

Accepted / Excluded patterns

As from version 2.3.20 the framework provides two new interfaces which are used to accept / exclude param names and values - AcceptedPatternsChecker
and with default implementations. These two interfaces are used by and to check if ExcludedPatternsChecker Parameters Interceptor Cookie Interceptor
param can be accepted or must be excluded. If you were using previously please compare patterns used by you with these provided by excludeParams

the framework in default implementation.

Strict Method Invocation

This mechanism was introduced in version 2.5. It allows control what methods can be accessed with the bang "!" operator via . Dynamic Method Invocation
Please read more in Strict Method Invocation section of .Action Configuration

http://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/security/AcceptedPatternsChecker.html
http://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/security/AcceptedPatternsChecker.html
http://struts.apache.org/maven/struts2-core/apidocs/com/opensymphony/xwork2/security/ExcludedPatternsChecker.html
https://cwiki.apache.org/confluence/display/WW/Parameters+Interceptor
https://cwiki.apache.org/confluence/display/WW/Cookie+Interceptor
https://cwiki.apache.org/confluence/display/WW/Action+Configuration#ActionConfiguration-DynamicMethodInvocation
https://cwiki.apache.org/confluence/display/WW/Action+Configuration

	Security

