
Building connectors
This page contains tutorials and tips and tricks for building your own MetaModel connectors, e.g. objects that implement .DataContext

First implementation - extend QueryPostProcessDataContext

First we will reuse the abstract class QueryPostProcessDataContext, which makes our implementation a whole lot simpler than starting from scratch.

1. Create a new class that extends that holds a reference to a native API object. Taking existing XXXDataContext QueryPostProcessDataContext
examples:

CouchDbDataContext holds Ektorp' CouchDbInstance.
HBaseDataContext holds HTablePool.
CsvDataContext holds a handle to a file (through MetaModel's class, to be precise)Resource

2. Implement to fetch the data that is going to represent the table, using the native API. Good existing examples:materializeMainSchemaTable

CouchDbDataContext fetches a view will all docs through Ektorp's .CouchDbInstance
HBaseDataContext creates a of a table through .Scan HBaseTablePool
CsvDataContext reads the whole file using our file handle.

3. Return a new instance with the native result passed as a parameter. class takes the native result object and translates it to XXXDataSet XXXDataSet
the MetaModel's objects.Row

CouchDbDataSet will parse the JSON document and instantiate MetaModel's object with this dataRow
HBaseDataSet extracts the values from the Scan and instantiates MetaModel's object with the valuesRow
CsvDataSet translates a line from a CSV file into MetaModel's objectRow

This is the minimum that needs to be implemented. While we have the native result translated to MetaModel's objects, selecting specific columns, Row
filtering and so on we get for free from class that we subclassed. Of course, it is not the most performant way of QueryPostProcessDataContext
querying, for example doing a full scan to get a single row by its primary key is optimized in many databases. Delegating primary key lookups, count
queries, queries with simple WHERE clauses to the native API instead of post-processing it in Java is the next step for a developer of a
new MetaModel connector.

Optional next step - Override methods for optimized query execution

Now you have a working DataContext, but there may be some really unfortunate performance penalties associated with it.

You may want to look at overriding methods such as , and the other argument-executeCountQuery(...) executePrimaryKeyLookupQuery(...)
variants of to improve performance and minimize client-side memory consumption too.materializeMainSchemaTable(...)

Optional next step - Implement UpdateableDataContext

If you wish to support data updates (inserts, updates, deletions etc.) then you have to implement too.UpdateableDataContext

Optional next step - Create a DataContextFactory

If you want to make your DataContext createble in the most convenient way for external tools then it is usually a good idea to implement our SPI interface,
. This will enable your DataContext to be instantiated using properties.DataContextFactory

Finally, register your factory by creating a file named in your JAR /META-INF/services/org.apache.metamodel.factory.DataContextFactory
file, and ensure that it's text contents it the fully qualified class name of your factory.

https://cwiki.apache.org/confluence/display/METAMODEL/DataContext
https://cwiki.apache.org/confluence/display/METAMODEL/CSV+file+support
https://cwiki.apache.org/confluence/display/METAMODEL/CSV+file+support
https://cwiki.apache.org/confluence/display/METAMODEL/UpdateableDataContext

	Building connectors

