
1.
2.
3.
4.

5.

6.

1.
a.

b.

2.
a.

3.
4.

a.

5.

Log4j Scala API Release Process

Release Parameters

When preparing a release candidate, there are a few parameters either prompted for or needed to be updated manually. These include:

Tag version: e.g., 12.3-rc4
Release version: e.g., 12.3
GPG key id: e.g., 1234567887654321
Log4j Core dependency version (both the published dependency and documentation example)

Preparation

Verify the project builds cleanly via ./sbt "+test"
Verify the site builds cleanly via ./sbt makeSite
Verify the files pass the audit check via ./sbt auditCheck
Make sure you have a 4096-bit RSA PGP key for signing releases uploaded to a public PGP key repository (preferably http://keyserver.ubuntu.

) as well as located in the file.com KEYS
Configure sbt with your pgp key by first exporting into the old format for use by sbt-pgp by running gpg --export-secret-keys --armor --

 and then edit the file with the following:output ~/.sbt/gpg/secring.asc ~/.sbt/gpg.sbt

gpg.sbt

useGpg := true
pgpSecretRing := Path.userHome / ".sbt" / "gpg" / "secring.asc"
usePgpKeyHex("1234567887654321")

Configure your Apache credentials by writing to with something like:~/.sbt/1.0/global.sbt

global.sbt

credentials += Credentials("Sonatype Nexus Repository Manager", "repository.apache.org", "username",
"password")

Releasing

Run and answer the version number prompts../sbt release
 the version number used here should be a release version like due to script limitations. When prompted to push your Important: 12.3
local changes, say "No", and move the tag: git tag v12.3-rc3 'v12.3^{}' && git tag -d v12.3 && git push --tags
Close the staging release repository afterwards by logging in to and finding the https://repository.apache.org/#stagingRepositories
appropriate repository.orgapachelogging-NNNN

Check out the created tag and run GPG_KEYID=mykeyid ./create-distributions.sh <release-version-number>
FIXME: binary distributions may not be signed by default; make sure to sign them! As a workaround, use the following bash script: cd
target; for f in *.zip *.gz; do -a 256 $f >$f.sha256; shasum -a 512 $f >$f.sha512; doneshasum

Commit those to for staging (removing previous release candidates as necessary).https://dist.apache.org/repos/dist/dev/logging/log4j/scala
Commit the site to github pages for previewing.

FIXME: this currently requires manually aggregating the API docs from each directory into target/scala-2.xx/api/ target/site
. Can be done via: .../api/2.xx/ cd target/site/api; mv ../../scala-2.10/api 2.10

Perform a release email and follow the usual release process as Log4j Core does.

http://keyserver.ubuntu.com
http://keyserver.ubuntu.com
https://www.apache.org/dist/logging/KEYS
https://repository.apache.org/#stagingRepositories
https://dist.apache.org/repos/dist/dev/logging/log4j/scala

	Log4j Scala API Release Process

