
JXPath

JXPath

Camel supports to allow expressions to be used on beans in an or to be used in the or . For JXPath XPath Expression Predicate DSL Xml Configuration
example you could use JXPath to create an in a or as an for a .Predicate Message Filter Expression Recipient List

You can use XPath expressions directly using smart completion in your IDE as follows

from("queue:foo").filter(). jxpath("/in/body/foo"). to("queue:bar")

Variables

Variable Type Description

this Exchang
e

the Exchange object

in Message the exchange.in message

out Message the exchange.out
message

Options

Option Type Description

lenient boolean Allows to turn lenient on the JXPathContext. When turned on this allows the JXPath expression to evaluate against Camel 2.11/2.10.5:
expressions and message bodies which may be invalid / missing data. See more details at the This option is by default JXPath Documentation
false.

Using XML configuration

If you prefer to configure your routes in your XML file then you can use JXPath expressions as followsSpring

xml <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd"> <camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring"> <route>
<from uri="activemq:MyQueue"/> <filter> <jxpath>in/body/name = 'James'</xpath> <to uri="mqseries:SomeOtherQueue"/> </filter> </route> <
/camelContext> </beans>

Examples

Here is a simple using a JXPath expression as a predicate in a example Message Filter

{snippet:id=example|lang=java|url=camel/trunk/components/camel-jxpath/src/test/java/org/apache/camel/language/jxpath/JXPathFilterTest.java}

JXPath injection

You can use to invoke a method on a bean and use various languages such as JXPath to extract a value from the message and bind it to Bean Integration
a method parameter.

For example

public class Foo { @MessageDriven(uri = "activemq:my.queue") public void doSomething(@JXPath("in/body/foo") String correlationID, @Body String
body) { // process the inbound message here } }

Loading script from external resource

Available as of Camel 2.11

You can externalize the script and have Camel load it from a resource such as , , or ."classpath:" "file:" "http:"
This is done using the following syntax: , eg to refer to a file on the classpath you can do:"resource:scheme:location"

.setHeader("myHeader").jxpath("resource:classpath:myjxpath.txt")

Dependencies

To use JXpath in your camel routes you need to add the a dependency on which implements the JXpath language.camel-jxpath

http://commons.apache.org/jxpath/
https://cwiki.apache.org/confluence/display/CAMEL/XPath
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/DSL
https://cwiki.apache.org/confluence/display/CAMEL/Xml+Configuration
https://cwiki.apache.org/confluence/display/CAMEL/Predicate
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Expression
https://cwiki.apache.org/confluence/display/CAMEL/Recipient+List
http://commons.apache.org/proper/commons-jxpath//users-guide.html#Lenient_Mode
https://cwiki.apache.org/confluence/display/CAMEL/Spring
http://svn.apache.org/repos/asf/camel/trunk/components/camel-jxpath/src/test/java/org/apache/camel/language/jxpath/JXPathFilterTest.java
https://cwiki.apache.org/confluence/display/CAMEL/Message+Filter
https://cwiki.apache.org/confluence/display/CAMEL/Bean+Integration

If you use maven you could just add the following to your pom.xml, substituting the version number for the latest & greatest release (see the download
).page for the latest versions

<dependency> <groupId>org.apache.camel</groupId> <artifactId>camel-jxpath</artifactId> <version>x.x.x</version> </dependency>

Otherwise, you'll also need .Commons JXPath

https://cwiki.apache.org/confluence/display/CAMEL/Download
https://cwiki.apache.org/confluence/display/CAMEL/Download
http://repo2.maven.org/maven2/commons-jxpath/commons-jxpath/1.3/commons-jxpath-1.3.jar

	JXPath

