
TikaServer
Introduction to Tika server
This page is documentation on accessing Tika as a RESTful API via the Tika server (tika-server module). See for how to configure TikaServer in Tika 2.x t

. See for a summary of differences across the endpoints.ika-server TikaServerEndpointsCompared

Introduction to Tika server
Installation of Tika Server
Building from source
Running the Tika Server as a Jar file
Using prebuilt Docker image
Running Tika Server as Unix Service

Configuring Tika server in 2.x
Tika Server Services

Metadata Resource
Multipart Support

Tika Resource
Get HELLO message back
Get the Text of a Document
Skip Embedded Files/Attachments
Multipart Support

Detector Resource
PUT an RTF file and get back RTF
PUT a CSV file without filename hint and get back text/plain
PUT a CSV file with filename hint and get back text/csv

Language Resource
PUT a TXT file with English This is English! and get back en
PUT a TXT file with French comme çi comme ça and get back fr
PUT a string with English This is English! and get back en
PUT a string with French comme çi comme ça and get back fr

Translate Resource
PUT a TXT file named sentences with Spanish me falta práctica en Español and get back the English translation using Lingo24
PUT a TXT file named sentences with Spanish me falta práctica en Español and get back the English translation using Microsoft
PUT a TXT file named sentences with Spanish me falta práctica en Español and get back the English translation using Google
PUT a TXT file named sentences2 with French comme çi comme ça and get back the English translation using Google auto-
detecting the language

Recursive Metadata and Content
Multipart Support
Skip Embedded Files/Attachments
Specifying Limits
Filtering Metadata Keys
Filtering Metadata Objects
Integration with tika-eval

Unpack Resource
PUT zip file and get back met file zip
PUT doc file and get back met file tar
PUT doc file and get back the content and metadata
PUT zip file and get back met file zip and bump max attachment size from default 100MB to custom 1GB

Information Services
Available Endpoints
Defined Mime Types
Available Detectors
Available Parsers
Specifying a URL Instead of Putting Bytes in Tika >= 2.x

Transfer-Layer Compression
Making Legacy Tika Server Endpoints Robust to OOMs, Infinite Loops and Memory Leaks in Tika >= 2.x
Making Tika Server Robust to OOMs, Infinite Loops etc. with the tika-pipes handlers
Logging
Monitoring

ServerStatus
SSL (Beta)
Configuring Parsers at Parse time/per file
Architecture

Installation of Tika Server

The current installation process for Tika server post 1.23 and prior to 1.24 is a bit in flux. Read on below for some options:

Building from source

If you need to customize Tika server in some way, and/or need the very latest version to try out a fix, then to build from source:

https://cwiki.apache.org/confluence/display/TIKA/TikaServer+in+Tika+2.x
https://cwiki.apache.org/confluence/display/TIKA/TikaServerEndpointsCompared

1.
2.
3.

Checkout the source from SVN as detailed on the or retrieve the latest code from ,Apache Tika contributions page Github
Build source using Maven
Run the Apache Tika JAXRS server runnable jar.

git clone https://github.com/apache/tika.git tika-trunk
cd ./tika-trunk/
mvn install
cd ./tika-server/target/
java -jar tika-server-x.x.jar

Remember to replace x.x with the version you have built.

Running the Tika Server as a Jar file

The Tika Server binary is a standalone runnable jar. Download the latest stable release binary from the , via your favorite Apache Tika downloads page
local mirror. You want the file, e.g. tika-server-1.x.jar tika-server-1.24.jar

You can start it by calling java with the option, eg something like -jar java -jar tika-server-1.24.jar

You will then see a message such as the following:

$ java -jar tika-server-1.24-SNAPSHOT.jar
19-Jan-2015 14:23:36 org.apache.tika.server.TikaServerCli main
INFO: Starting Apache Tika 1.8-SNAPSHOT server
19-Jan-2015 14:23:36 org.apache.cxf.endpoint.ServerImpl initDestination
INFO: Setting the server's publish address to be http://localhost:9998/
19-Jan-2015 14:23:36 org.slf4j.impl.JCLLoggerAdapter info
INFO: jetty-8.y.z-SNAPSHOT
19-Jan-2015 14:23:36 org.slf4j.impl.JCLLoggerAdapter info
INFO: Started SelectChannelConnector@localhost:9998
19-Jan-2015 14:23:36 org.apache.tika.server.TikaServerCli main
INFO: Started

Which lets you know that it started correctly.

You can specify additional information to change the host name and port number:

java -jar tika-server-x.x.jar --host=intranet.local --port=12345

Once the server is running, you can visit the server's URL in your browser (eg), and the basic welcome page will confirm http://localhost:9998/
that the Server is running, and give links to the various endpoints available.

Below is some basic documentation on how to interact with the services using cURL and HTTP.

Using prebuilt Docker image

Official image for Tika can be found at . You can download and start it with:DockerHub

docker run -d -p 9998:9998 apache/tika:<version>

Full set of documentation can be found at .Github

Running Tika Server as Unix Service

Shipping in Tika 1.24 is a new Service Installation Script that lets you install Tika server as a service on Linux. This script was heavily influenced by the Ap
 project's script, so read up on that documentation if you want to customize the script.ache Solr

Currently the script only supports CentOS, Debian, Red Hat, Suse and Ubuntu Linxu distributions. Before running the script, you need to determine a few
parameters about your setup. Specifically, you need to decide where to install Tika server and which system user should be the owner of the Tika files and
process

To run the scripts, you'll need the 1.24 (or later) . It will have a suffix e.g. . Extract the installation Tika distribution -bin tika-server-1.24-bin.tgz
script from the distribution via:

http://tika.apache.org/contribute.html
https://github.com/apache/tika
http://tika.apache.org/download.html
http://localhost:9998/
https://hub.docker.com/r/apache/tika
https://github.com/apache/tika-docker
https://lucene.apache.org/solr/guide/8_4/taking-solr-to-production.html#taking-solr-to-production
https://lucene.apache.org/solr/guide/8_4/taking-solr-to-production.html#taking-solr-to-production
https://www.apache.org/dyn/closer.cgi/tika/tika-server-1.24-bin.tgz

tar xzf tika-server-1.24-bin.tgz tika-server-1.24-bin/bin/install_tika_service.sh --strip-components=2

This will extract the install_tika_service.sh script from the archive into the current directory. If installing on Red Hat, please make sure is installed lsof
before running the Tika installation script (). The installation script must be run as root:sudo yum install lsof

sudo bash ./install_tika_service.sh tika-server-1.24-bin.tgz

By default, the script extracts the distribution archive into , configures Tika to write files into , and runs Tika as the user on /opt/tika /var/tika tika
the default port. Consequently, the following command produces the same result as the previous command:

sudo bash ./install_tika_service.sh tika-server-1.24-bin -i /opt -d /var/tika -u tika -s tika -p 9998

You can customize the service name, installation directories, port, and owner using options passed to the installation script. To see available options,
simply do:

sudo bash ./install_tika_service.sh -help

Once the script completes, Tika server will be installed as a service and running in the background on your server (on port 9998). To verify, you can do:

sudo service tika status

Your specific customization to Tika server setup are stored in the file. /etc/init.d/tika

Configuring Tika server in 2.x
See for the details of configuring tika-server in 2.x.TikaServer in Tika 2.x

Tika Server Services
All services that take files use HTTP "PUT" requests. When "PUT" is used, the original file must be sent in request body without any additional encoding
(do not use multipart/form-data or other containers).

Additionally, , Metadata and Services accept POST multipart/form-data requests, where the original file is sent as a TikaResource RecursiveMetadata
single attachment.

Information services (e.g. defined mimetypes, defined parsers etc) work with HTML "GET" requests.

You may optionally specify content type in "Content-Type" header. If you do not specify mime type, Tika will use its detectors to guess it.

You may specify additional identifier in URL after resource name, like "/tika/my-file-i-sent-to-tika-resource" for "/tika" resource. Tikaserver uses this name
only for logging, so you may put there file name, UUID or any other identifier (do not forget to url-encode any special characters).

Resources may return following HTTP codes:

200 Ok - request completed sucessfully
204 No content - request completed sucessfully, result is empty
422 Unprocessable Entity - Unsupported mime-type, encrypted document & etc
500 Error - Error while processing document

NOTE: Please see for a quick comparison of the features of some of these endpoints.TikaServerEndpointsCompared

Metadata Resource

/meta

HTTP PUTs a document to the /meta service and you get back "text/csv" of the metadata.

Some Example calls with cURL:

$ curl -X PUT --data-ascii @zipcode.csv http://localhost:9998/meta --header "Content-Type: text/csv"
$ curl -T price.xls http://localhost:9998/meta

https://cwiki.apache.org/confluence/display/TIKA/TikaServer+in+Tika+2.x
#
https://cwiki.apache.org/confluence/display/TIKA/RecursiveMetadata
https://cwiki.apache.org/confluence/display/TIKA/TikaServerEndpointsCompared

Returns:

"Content-Encoding","ISO-8859-2"
"Content-Type","text/plain"

Get metadata as JSON:

$ curl -T test_recursive_embedded.docx http://localhost:9998/meta --header "Accept: application/json"

Or XMP:

$ curl -T test_recursive_embedded.docx http://localhost:9998/meta --header "Accept: application/rdf+xml"

Get specific metadata key's value as simple text string:

$ curl -T test_recursive_embedded.docx http://localhost:9998/meta/Content-Type --header "Accept: text/plain"

Returns:

application/vnd.openxmlformats-officedocument.wordprocessingml.document

Get specific metadata key's value(s) as CSV:

$ curl -T test_recursive_embedded.docx http://localhost:9998/meta/Content-Type --header "Accept: text/csv"

Or JSON:

$ curl -T test_recursive_embedded.docx http://localhost:9998/meta/Content-Type --header "Accept: application
/json"

Or XMP:

$ curl -T test_recursive_embedded.docx http://localhost:9998/meta/Content-Type --header "Accept: application
/rdf+xml"

Note: when requesting specific metadata keys value(s) in XMP, make sure to request the XMP name, e.g. "dc:creator" vs. "Author"

Multipart Support

Metadata Resource also accepts the files as multipart/form-data attachments with POST. Posting files as multipart attachments may be beneficial in cases
when the files are too big for them to be PUT directly in the request body. Note that Tika JAX-RS server makes the best effort at storing some of the
multipart content to the disk while still supporting the streaming:

curl -F upload=@price.xls URL http://localhost:9998/meta/form

Note that the address has an extra "/form" path segment.

Tika Resource

/tika

HTTP PUTs a document to the /tika service and you get back the extracted text in text, html or "body" format (see below). See also the endpoint /rmeta
for text and metadata of embedded objects.

HTTP GET prints a greeting stating the server is up.

Some Example calls with cURL:

Get HELLO message back

$ curl -X GET http://localhost:9998/tika
This is Tika Server. Please PUT

Get the Text of a Document

$ curl -X PUT --data-binary @GeoSPARQL.pdf http://localhost:9998/tika --header "Content-type: application/pdf"
$ curl -T price.xls http://localhost:9998/tika --header "Accept: text/html"
$ curl -T price.xls http://localhost:9998/tika --header "Accept: text/plain"

Use the Boilerpipe handler (equivalent to tika-app's) with text output:--text-main

$ curl -T price.xls http://localhost:9998/tika/main --header "Accept: text/plain"

With Tika 1.27 and greater, you can get the text and metadata of a file in json format with:

$ curl -T price.xls http://localhost:9998/tika --header "Accept: application/json"

To specify whether you want the content to be text (vs. html) specify the handler type after :/tika

$ curl -T price.xls http://localhost:9998/tika/text --header "Accept: application/json"

Skip Embedded Files/Attachments

$ curl -T test_recursive_embedded.docx http://localhost:9998/tika --header "Accept: text/plain" --header"X-Tika-
Skip-Embedded: true"

Multipart Support

Tika Resource also accepts the files as multipart/form-data attachments with POST. Posting files as multipart attachments may be beneficial in cases
when the files are too big for them to be PUT directly in the request body. Note that Tika JAX-RS server makes the best effort at storing some of the
multipart content to the disk while still supporting the streaming:

curl -F upload=@price.xls URL http://localhost:9998/tika/form

Note that the address has an extra "/form" path segment.

Detector Resource

/detect/stream

HTTP PUTs a document and uses the Default Detector from Tika to identify its MIME/media type. The caveat here is that providing a hint for the filename
can increase the quality of detection.

Default return is a string of the Media type name.

Some Example calls with cURL:

PUT an RTF file and get back RTF

$ curl -X PUT --data-binary @TODO.rtf http://localhost:9998/detect/stream

PUT a CSV file without filename hint and get back text/plain

$ curl -X PUT --upload-file foo.csv http://localhost:9998/detect/stream

PUT a CSV file with filename hint and get back text/csv

$ curl -X PUT -H "Content-Disposition: attachment; filename=foo.csv" --upload-file foo.csv http://localhost:9998
/detect/stream

Language Resource

/language/stream

HTTP PUTs or POSTs a UTF-8 text file to the to identify its language. LanguageIdentifier

NOTE: This endpoint does not parse files. It runs detection on a UTF-8 string.

Default return is a string of the 2 character identified language.

Some Example calls with cURL:

PUT a TXT file with English This is English! and get back en

$ curl -X PUT --data-binary @foo.txt http://localhost:9998/language/stream
en

PUT a TXT file with French comme çi comme ça and get back fr

curl -X PUT --data-binary @foo.txt http://localhost:9998/language/stream
fr

/language/string

HTTP PUTs or POSTs a text string to the to identify its language.LanguageIdentifier

Default return is a string of the 2 character identified language.

Some Example calls with cURL:

PUT a string with English This is English! and get back en

$ curl -X PUT --data "This is English!" http://localhost:9998/language/string
en

PUT a string with French comme çi comme ça and get back fr

curl -X PUT --data "comme çi comme ça" http://localhost:9998/language/string
fr

Translate Resource

#
#

/translate/all/translator/src/dest

HTTP PUTs or POSTs a document to the identified *translator* and translates from *src* language to *dest*

Default return is the translated string if successful, else the original string back.

Note that: * *translator* should be a fully qualified Tika class name (with package) e.g., org.apache.tika.language.translate.Lingo24Translator * *src* should
be the 2 character short code for the source language, e.g., 'en' for English * *dest* should be the 2 character short code for the dest language, e.g., 'es'
for Spanish.

Some Example calls with cURL:

PUT a TXT file named sentences with Spanish me falta práctica en Español and get back the English
translation using Lingo24

$ curl -X PUT --data-binary @sentences http://localhost:9998/translate/all/org.apache.tika.language.translate.
Lingo24Translator/es/en
lack of practice in Spanish

PUT a TXT file named sentences with Spanish me falta práctica en Español and get back the English
translation using Microsoft

$ curl -X PUT --data-binary @sentences http://localhost:9998/translate/all/org.apache.tika.language.translate.
MicrosoftTranslator/es/en
I need practice in Spanish

PUT a TXT file named sentences with Spanish me falta práctica en Español and get back the English
translation using Google

$ curl -X PUT --data-binary @sentences http://localhost:9998/translate/all/org.apache.tika.language.translate.
GoogleTranslator/es/en
I need practice in Spanish

/translate/all/src/dest

HTTP PUTs or POSTs a document to the identified *translator* and auto-detects the *src* language using , and then translates *src* to LanguageIdentifiers
dest

Default return is the translated string if successful, else the original string back.

Note that: * *translator* should be a fully qualified Tika class name (with package) e.g., org.apache.tika.language.translate.Lingo24Translator * *dest*
should be the 2 character short code for the dest language, e.g., 'es' for Spanish.

PUT a TXT file named sentences2 with French comme çi comme ça and get back the English
translation using Google auto-detecting the language

$ curl -X PUT --data-binary @sentences2 http://localhost:9998/translate/all/org.apache.tika.language.translate.
GoogleTranslator/en
so so

Recursive Metadata and Content

/rmeta

Returns a JSONified list of Metadata objects for the container document and all embedded documents. The text that is extracted from each document is
stored in the metadata object under "X-TIKA:content".

#

$ curl -T test_recursive_embedded.docx http://localhost:9998/rmeta

Returns:

[
 {"Application-Name":"Microsoft Office Word",
 "Application-Version":"15.0000",
 "X-Parsed-By":["org.apache.tika.parser.DefaultParser","org.apache.tika.parser.microsoft.ooxml.OOXMLParser"],
 "X-TIKA:content":"embed_0 "
 ...
 },
 {"Content-Encoding":"ISO-8859-1",
 "Content-Length":"8",
 "Content-Type":"text/plain; charset=ISO-8859-1"
 "X-TIKA:content":"embed_1b",
 ...
 }
 ...
]

The default format for "X-TIKA:content" is XML. However, you can select "text only" with

/rmeta/text

HTML with

/rmeta/html

and no content (metadata only) with

/rmeta/ignore

Multipart Support

Metadata Resource also accepts the files as multipart/form-data attachments with POST. Posting files as multipart attachments may be beneficial in cases
when the files are too big for them to be PUT directly in the request body. Note that Tika JAX-RS server makes the best effort at storing some of the
multipart content to the disk while still supporting the streaming:

curl -F upload=@test_recursive_embedded.docx URL http://localhost:9998/rmeta/form

Note that the address has an extra "/form" path segment.

Skip Embedded Files/Attachments

$ curl -T test_recursive_embedded.docx http://localhost:9998/rmeta --header "X-Tika-Skip-Embedded: true"

Specifying Limits

As of Tika 1.25, you can limit the maximum number of embedded resources and the write limit per handler.

To specify the maximum number of embedded documents, set the in the header. Note that the container document does not maxEmbeddedResources
count towards this number. The following will return the results for the container document only.

curl -T test_recursive_embedded.docx --header "maxEmbeddedResources: 0" http://localhost:9998/rmeta

To specify a write limit per handler, set the parameter in a header. This limit applies to each handler (each embedded document). If this is writeLimit
triggered, the parse will continue on to the next embedded object and store = in the metadata X-TIKA:Exception:write_limit_reached "true"
object for the embedded file that triggered the write limit.

curl -T test_recursive_embedded.docx --header "writeLimit: 1000" http://localhost:9998/rmeta

NOTE: In Tika 2.0, the writeLimit applies to the full document including the embedded files, not to each handler.

Filtering Metadata Keys

The endpoint can return far more metadata fields than a user might want to process. As of Tika 1.25, users can configure a MetadataFilter that /rmeta
either or fields by name. includes excludes

Note: the only work with the endpoint. Further, they do not shortcut metadata extraction within Parsers. They only delete MetadataFilters /rmeta
the unwanted fields after the parse. This still can save resources in storage and network bandwidth.

A user can map Tika field names to names they prefer. If is set to true, only those fields that are included in the mapping are passed excludeUnmapped
back to the client.

FieldNameMappingFilter

<properties>
 <metadataFilters>
 <metadataFilter class="org.apache.tika.metadata.filter.FieldNameMappingFilter">
 <params>
 <excludeUnmapped>true</excludeUnmapped>
 <mappings>
 <mapping from="X-TIKA:content" to="content"/>
 <mapping from="a" to="b"/>
 </mappings>
 </params>
 </metadataFilter>
 </metadataFilters>
</properties>

A user can set the following in a file to have the end point only return three fields:tika-config.xml /rmeta

IncludeFieldMetadataFilter

<properties>
 <metadataFilters>
 <metadataFilter class="org.apache.tika.metadata.filter.IncludeFieldMetadataFilter">
 <params>
 <include>
 <field>X-TIKA:content</include>
 <field>extended-properties:Application</include>
 <field>Content-Type</include>
 </param>
 </params>
 </metadataFilter>
 </metadataFilters>
</properties>

To exclude those three fields but include all other fields:

ExcludeFieldMetadataFilter

<properties>
 <metadataFilters>
 <metadataFilter class="org.apache.tika.metadata.filter.ExcludeFieldMetadataFilter">
 <params>
 <exclude>
 <field>X-TIKA:content</field>
 <field>extended-properties:Application</field>
 <field>Content-Type</field>
 </param>
 </params>
 </metadataFilter>
 </metadataFilters>
</properties>

Filtering Metadata Objects

A user may want to parse a file type to get at the embedded contents within it, but s/he may not want a metadata object or contents for the file type
itself. For example, files often contain duplicative text, but they may contain an embedded PDF file. If the client had turned off the image/emf EMFParser
, the embedded PDF file would not be parsed. When the endpoint is configured with the following, it will delete the entire metadata object for files /rmeta
of type .image/emf

ClearByMimeMetadataFilter

<properties>
 <metadataFilters>
 <metadataFilter class="org.apache.tika.metadata.filter.ClearByMimeMetadataFilter">
 <params>
 <mimes>
 <mime>image/emf</mime>
 </mimes>
 </params>
 </metadataFilter>
 </metadataFilters>
</properties>

Integration with tika-eval

As of Tika 1.25, if a user adds the jar to the server jar's classpath, the endpoint will add key "profiling" statistics from the tika-eval /rmeta tika-eval
 module, including: language identified, number of tokens, number of alphabetic tokens and the "out of vocabulary" percentage. These statistics can be
used to decide to reprocess a file with OCR or to reprocess an HTML file with a different encoding detector.

To accomplish this, one may put both the tika-eval jar and the server jar in a directory and then run:bin/

java -cp bin/* org.apache.tika.server.TikaServerCli

See the page for more details. Please open issues on our JIRA if you would like other statistics included or if you'd like to make the calculated TikaEval
statistics configurable.

Unpack Resource

/unpack

HTTP PUTs an embedded document type to the /unpack service and you get back a zip or tar of the raw bytes of the embedded files. Note that this does
not operate recursively; it extracts only the child documents of the original file.

You can also use /unpack/all to get back the text and metadata from the container file. If you want the text and metadata from all embedded files, consider
using the /rmeta end point.

Default return type is ZIP (without internal compression). Use "Accept" header for TAR return type.

Some example calls with cURL:

https://cwiki.apache.org/confluence/display/TIKA/TikaEval

PUT zip file and get back met file zip

$ curl -X PUT --data-binary @foo.zip http://localhost:9998/unpack --header "Content-type: application/zip"

PUT doc file and get back met file tar

$ curl -T Doc1_ole.doc -H "Accept: application/x-tar" http://localhost:9998/unpack > /var/tmp/x.tar

PUT doc file and get back the content and metadata

$ curl -T Doc1_ole.doc http://localhost:9998/unpack/all > /var/tmp/x.zip

Text is stored in file, metadata cvs in . Use "accept" header if you want TAR output.TEXT METADATA

PUT zip file and get back met file zip and bump max attachment size from default 100MB to custom
1GB

This is available in tika-server versions greater than 2.8.0.

$ curl -X PUT --data-binary @foo.zip http://localhost:9998/unpack --header "Content-type: application/zip" --
header "unpackMaxBytes: 1073741824"

Information Services

Available Endpoints

/

Hitting the route of the server in your web browser will give a basic report of all the endpoints defined in the server, what URL they have etc

Defined Mime Types

/mime-types

Mime types, their aliases, their supertype, and the parser. Available as plain text, json or human readable HTML

Available Detectors

/detectors

The top level Detector to be used, and any child detectors within it. Available as plain text, json or human readable HTML

Available Parsers

/parsers

Lists all of the parsers currently available

/parsers/details

List all the available parsers, along with what mimetypes they support

Specifying a URL Instead of Putting Bytes in Tika >= 2.x

In Tika 2.x, use a FileSystemFetcher, a UrlFetcher or or an HttpFetcher. See: tika-pipes (FetchersInClassicServerEndpoints)

We have entirely removed the capability that we had in 1.x because it posed a security threat.-enableFileUrl

Transfer-Layer Compression
As of Tika 1.24.1, users can turn on compression for either files on their way to or the output from .gzip tika-server tika-server

If you want to your files before sending to , addgzip tika-server

curl -T test_my_doc.pdf -H "Content-Encoding: gzip" http://localhost:9998/rmeta

If you want to compress the output of the parse:tika-server

curl -T test_my_doc.pdf -H "Accept-Encoding: gzip" http://localhost:9998/rmeta

Making Legacy Tika Server Endpoints Robust to OOMs, Infinite Loops and
Memory Leaks in Tika >= 2.x
As of Tika 2.x, the default behavior is that the main code forks the server process to handle parsing. If there's an OOM or a timeout or other crash during
the parse, the forked process will shutdown and restart.

If the child process is in the process of shutting down, and it gets a new request it will return . If the server times out on 503 -- Service Unavailable
a file, the client will receive an IOException from the closed socket. Note that all other files that are being processed will end with an IOException from a
closed socket when the child process shuts down; e.g. if you send three files to tika-server concurrently, and one of them causes a catastrophic problem
requiring the child to shut down, you won't be able to tell which file caused the problems. In the future, we may implement a gentler shutdown than we
currently have.

To turn off this behavior and to go back to the more dangerous Tika 1.x legacy behavior, configure tika-server with the or add <noFork>true</noFork>
 as the commandline argument.--noFork

NOTE: As mentioned above, clients will need to be aware that the server could be unavailable temporarily while it is restarting. Clients will need to have a
retry logic.

Making Tika Server Robust to OOMs, Infinite Loops etc. with the tika-pipes
handlers
There are two handlers (and) that use the tika-pipes framework that was added in Tika 2.x. These run the parses, a single file at a time, /pipes /async
in forked processes so that the tika-server is always "up" even when a parser strikes catastrophe. See .tika-pipes

Logging
In Tika 1.x, you can customize logging via the usual commandline argument, e.g. . If log4j -Dlog4j.configuration=file:log4j_server.xml
using , specify the configuration for the child process with the prepended as in -spawnChild -J java -jar tika-server-X.Y-jar -spawnChild -

. Some important notes for logging in the child process in versions <= 1.19.1: 1) make sure that JDlog4j.configuration=file:log4j_server.xml
the option is off, and 2) do not log to stdout (this is used for interprocess communication between the parent and child!).debug

The default level of logging is , but you can also set logging to via the commandline: .debug info -log info

In Tika 2.x, you can set log4j2.xml configuration for the forked process in the <jvmArgs/> element. See below.

Monitoring

https://cwiki.apache.org/confluence/display/TIKA/tika-pipes#tikapipes-FetchersInClassicServerEndpoints
https://cwiki.apache.org/confluence/display/TIKA/tika-pipes

ServerStatus

Tika Server uses ServerStatus object to maintain and track current status of server. The data can be exported to REST resource and JMX MBean (from
1.26).

To enable REST endpoint and JMX MBean:

java -jar tika-server-x.x.jar -status

REST resource to access server status:

/status

MBean:

Object name: org.apache.tika.server.mbean:type=basic,name=ServerStatusExporter

NOTE: In Tika 2.x, this endpoint is enabled by either or by specifying it as an endpoint.enablingUnsecureFeatures

<properties>
 <server>
 <params>
 <enableUnsecureFeatures>true</enableUnsecureFeatures>
 </params>
 </server>
</properties>

<properties>
 <server>
 <params>
 <port>9999</port>
 <forkedJvmArgs>
 <arg>-Xmx2g</arg>
 <arg>-Dlog4j.configurationFile=my-forked-log4j2.xml</arg>
 </forkedJvmArgs>
 <endpoints>
 <endpoint>status</endpoint>
 <endpoint>rmeta</endpoint>
 </endpoints>
 </params>
 </server>
</properties>

SSL (Beta)
Tika Server now has the ability to be spawned with SSL enabled by providing a keystore/Truststore as part of the configuration, this is likely to change but
is available as part of Tika 2.4.0.

Example:

<properties>
 <server>
 <params>
 <port>9999</port>
 <forkedJvmArgs>
 <arg>-Xmx2g</arg>
 </forkedJvmArgs>
 <endpoints>
 <endpoint>rmeta</endpoint>
 </endpoints>
 </params>
 <tlsConfig>
 <params>
 <active>true</active>
 <keyStoreType>myType</keyStoreType>
 <keyStorePassword>pass</keyStorePassword>
 <keyStoreFile>/something/or/other</keyStoreFile>
 <trustStoreType>myType2</trustStoreType>
 <trustStorePassword>pass2</trustStorePassword>
 <trustStoreFile>/something/or/other2</trustStoreFile>
 </params>
 </tlsConfig>
 </server>
</properties>

If you are new to TLS, see for how we generated client and server keystores and truststores for our unit tests.our README.txt

Configuring Parsers at Parse time/per file
See .Configuring Parsers At Parse Time in tika-server

Architecture
Tika Server is based on JSR 311 for a network serve. The server package uses the framework that provides an implementation of JAX-RS Apache CXF
for Java.

https://github.com/apache/tika/blob/main/tika-server/tika-server-core/src/test/resources/ssl-keys/README.txt
https://cwiki.apache.org/confluence/display/TIKA/Configuring+Parsers+At+Parse+Time+in+tika-server
http://cxf.apache.org/

	TikaServer

