
Scalable Computing with MapReduce

Doug Cutting
doug@nutch.org

3 August 2005
OSCON, Portland, OR

Background: Nutch is scalable

● Nutch is web search software
– aims to be very scalable
– dominated by sort-merge computations

● updating url frontier when crawling
● inverting links, etc.

● Initial implementation is scalable...
– parallel processes on multiple machines
– some serial bottlenecks, but w/ plans to resolve
– 100M web pages demonstrated

... but not to billions of pages

● scales better than other open source options
– used by Creative Commons, OSU, etc.

● but large installations are operationally onerous
– manually monitoring multiple machines is painful
– data-interchange and space-allocation difficult

● with single operator
– hard to use more than a handful of machines
– effectively limited to ~100M pages

Need a Distributed File System

● single, shared namespace
● fault-tolerant
– disk failures
– node failures

● use disks already on computing nodes
● scales
– easy to add & remove disks from live system
– (with 1000 disks, expect disk failure daily)

Google publishes GFS paper

● meets all our needs (not surprisingly)
● single namenode
– maps name → <blockId>*
– maps blockId → <host:port>replication_level

● many datanodes, one per disk generally
– map blockId → <byte>*
– poll namenode for replication, deletion, etc. requests

● client code talks to both

Nutch Distributed File System
(NDFS)

● if it's good enough for Google...
● open-source, Java implementation of GFS
● part of Nutch project
● first implemented in 2003 by Mike Cafarella
● currently maintained in branches/mapred

Need Distributed Computing Platform

● partition stages (jobs) into work units (tasks)
● for each task
– allocate host
– start
– monitor
– kill when hung
– re-start when fails

● sequencing
– start next job when one job is complete

Google publishes MapReduce paper

● Platform for reliable, scalable computing.
● All data is sequences of <key,value> pairs.
● Programmer specifies two primary methods:
– map(k, v) → <k', v'>*
– reduce(k', <v'>*) → <k', v'>*
– also partition(), compare(), & others

● All v' with same k' are reduced together, in order.
– bonus: built-in support for sort/merge!

MapReduce job processing

split 0 map()
split 1 map() part 0reduce()
split 2 map() part 1reduce()
split 3 map() part 2reduce()
split 4 map()

input outputmap tasks reduce tasks

Use MapReduce in Nutch

● if it's good enough for Google...
– trust that, while not ultimate arch., workable arch.

● not all Nutch computations are sort/merge
– but all can easily be made to fit MapReduce

● not optimal for all computations
– but not far off, and perhaps cheaper in the end

● reliable distributed platform tricky to develop
– best to focus on a single implementation

Nutch on MapReduce

● Nutch's major algorithms converted in 2 weeks.
● Before:
– several were undistributed scalabilty bottlenecks
– distributable algorithms were complex to manage
– collections larger than 100M pages impractical

● After:
– all are scalable, distributed, easy to operate
– code is substantially smaller & simpler
– should permit multi-billion page collections

Nutch MapReduce Extensions

● Split output to multiple files
– saves subsequent i/o, since inputs are smaller

● Mix input value types
– saves MapReduce passes to convert values

● Async Map
– permits multi-threaded Fetcher

● Partition by Value
– facilitates selecting subsets w/ maximum key values

Example: RegexMapper
public class RegexMapper implements Mapper {
 private Pattern pattern;
 private int group;
 public void configure(JobConf job) {
 pattern = Pattern.compile(job.get("mapred.mapper.regex"));
 group = job.getInt("mapred.mapper.regex.group", 0);
 }
 public void map(WritableComparable key, Writable value,
 OutputCollector output, Reporter reporter)
 throws IOException {
 String text = ((UTF8)value).toString();
 Matcher matcher = pattern.matcher(text);
 while (matcher.find()) {
 output.collect(new UTF8(matcher.group(group)),
 new LongWritable(1));
 }
 }
}

Example: LongSumReducer

public class LongSumReducer implements Reducer {
 public void configure(JobConf job) {}
 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 long sum = 0;
 while (values.hasNext()) {
 sum += ((LongWritable)values.next()).get();
 }
 output.collect(key, new LongWritable(sum));
 }
}

Example: main()
 public static void main(String[] args) throws IOException {
 NutchConf defaults = NutchConf.get();
 JobConf job = new JobConf(defaults);
 job.setInputDir(new File(args[0]));
 job.setMapperClass(RegexMapper.class);
 job.set("mapred.mapper.regex", args[2]);
 job.set("mapred.mapper.regex.group", args[3]);
 job.setReducerClass(LongSumReducer.class);
 job.setOutputDir(args[1]);
 job.setOutputKeyClass(UTF8.class);
 job.setOutputValueClass(LongWritable.class);
 JobClient.runJob(job);
 }

Nutch Configuration

● By default, configured for
– in-process, single map & reduce task
– local filesystem

● Config files loaded, in order:
– nutch-default.xml – defaults (never edit)
– mapred-default.xml – overrides to defaults
– job.xml – specific to a MapReduce job
– nutch-site.xml – cannot be overridden

NDFS configuration

● in nutch-site.xml:
– specify namenode host, port & directory

 <property>
 <name>fs.default.name</name>
 <value>server-01.domain.com:8009</value>
 </property>
 <property>
 <name>ndfs.name.dir</name>
 <value>/nutch/names</value>
 </property>

– specify location for files on each datanode
 <property>
 <name>ndfs.data.dir</name>
 <value>/nutch/data</value>
 </property>

MapReduce configuration

● in nutch-site.xml, specify job tracker host & port
 <property>
 <name>mapred.job.tracker</name>
 <value>server-01.domain.com:8010</value>
 </property>
● in mapred-default.xml, specify task numbers
 <property>
 <name>mapred.map.tasks</name>
 <value>12</value>
 </property>
 <property>
 <name>mapred.reduce.tasks</name>
 <value>4</value>
 </property>

Nutch @ Internet Archive

● given 40-node Capricorn rack July 1
– 4 x 400GB drives per node
– 1Ghz Via processor, 512MB RAM

● currently using for testing & debugging
● DNS & router issues have prevented large crawl
● hope to demonstrate 1B page index soon
– crawling, and/or
– indexing Archive's pre-crawled data

NDFS benchmark

● using 30-nodes, one drive only
● 10,000 files with random data
– average 100MB, total 1TB

● 4 hours to create w/ replication=2
● 2 hours to read
● average 5MB/s per node, 1Gb/s overall
– around 50% of optimal
– scheduling is bottleneck, not disk, network or CPU

MapReduce status

● under active development
● usable today
● until Nutch 0.7 release, in branch:

– https://svn.apache.org/repos/asf/lucene/nutch/branches/mapred/

Thanks!

Questions?

http://lucene.apache.org/nutch/

