
MapReduce in Nutch

Doug Cutting
20 July 2005

MapReduce: Background

● Invented by Google
– http://labs.google.com/papers/mapreduce.html

● Platform for reliable, scalable computing.
● Implemented in Java as a part of Nutch
● Programmer specifies two primary methods:

– map(k, v) → <k', v'>*

– reduce(k', <v'>*) → <k', v'>*

– also partition(), compare(), & others

● All v' with same k' are reduced together, in order.

MapReduce Diagram

Split 0 map() Part 0reduce()

Split 1 map() Part 1reduce()

Split 2 map() Part 2reduce()

Split 3 map() Part 3reduce()

Split 4 map() Part 4reduce()

Input Output

MapReduce: Pros & Cons

● Not always a natural fit,
– but, with moderate force, many things will fit.

● Not always optimal,
– but not far off, and often cheaper in the end.

● Developing large-scale systems is expensive
● Shared platform:

– minimizes development & debug time

– maximizes optimizations, tools, etc.

Nutch Algorithms

● inject urls into a crawl db, to bootstrap it.
● loop:

– generate a set of urls to fetch from crawl db;

– fetch a set of urls into a segment;

– parse fetched content of a segment;

– update crawl db with data parsed from a segment.

● invert links parsed from segments
● index segment text & inlink anchor text

Data Structure: Crawl DB

● CrawlDb is a directory of files containing:

<URL, CrawlDatum>

● CrawlDatum:

<status, date, interval, failures, linkCount, ...>

● Status:

{db_unfetched, db_fetched, db_gone,

 linked,

 fetch_success, fetch_fail, fetch_gone}

Algorithm: Inject
● MapReduce1: Convert input to DB format

In: flat text file of urls

Map(line) → <url, CrawlDatum>; status=db_unfetched

Reduce() is identity;

Output: directory of temporary files

● MapReduce2: Merge into existing DB

Input: output of Step1 and existing DB files

Map() is identity.

Reduce: merge CrawlDatum's into single entry

Out: new version of DB

Algorithm: Generate

● MapReduce1: select urls due for fetch

In: Crawl DB files

Map() → if date≥now, invert to <CrawlDatum, url>

Partition by value hash (!) to randomize

Reduce:

compare() order by decreasing CrawlDatum.linkCount

output only top-N most-linked entries

● MapReduce2: prepare for fetch

Map() is invert; Partition() by host, Reduce() is identity.

Out: Set of <url,CrawlDatum> files to fetch in parallel

Algorithm: Fetch

● MapReduce: fetch a set of urls

In: <url,CrawlDatum>, partition by host, sort by hash

Map(url,CrawlDatum) → <url, FetcherOutput>
multi-threaded, async map implementation

calls existing Nutch protocol plugins

FetcherOutput: <CrawlDatum, Content>

Reduce is identity

Out: two files: <url,CrawlDatum>, <url,Content>

Algorithm: Parse

● MapReduce: parse content

In: <url, Content> files from Fetch

Map(url, Content) → <url, Parse>
calls existing Nutch parser plugins

Reduce is identity.

Parse: <ParseText, ParseData>

Out: split in three: <url,ParseText>, <url,ParseData> and
<url,CrawlDatum> for outlinks.

Algorithm: Update Crawl DB

● MapReduce: integrate fetch & parse out into db

In: <url,CrawlDatum> existing db plus fetch & parse out

Map() is identity

Reduce() merges all entries into a single new entry
overwrite previous db status w/ new from fetch

sum count of links from parse w/ previous from db

Out: new crawl db

Algorithm: Invert Links

● MapReduce: compute inlinks for all urls

In: <url,ParseData>, containing page outlinks

Map(srcUrl, ParseData> → <destUrl, Inlinks>
collect a single-element Inlinks for each outlink

limit number of outlinks per page

Inlinks: <srcUrl, anchorText>*

Reduce() appends inlinks

Out: <url, Inlinks>, a complete link inversion

Algorithm: Index

● MapReduce: create Lucene indexes

In: multiple files, values wrapped in <Class, Object>
<url, ParseData> from parse, for title, metadata, etc.

<url, ParseText> from parse, for text

<url, Inlinks> from invert, for anchors

<url, CrawlDatum> from fetch, for fetch date

Map() is identity

Reduce() create a Lucene Document
call existing Nutch indexing plugins

Out: build Lucene index; copy to fs at end

MapReduce Extensions

● Split output to multiple files
– saves subsequent i/o, since inputs are smaller

● Mix input value types
– saves MapReduce passes to convert values

● Async Map
– permits multi-threaded Fetcher

● Partition by Value
– facilitates selecting subsets w/ maximum key values

Summary

● Nutch's major algorithms converted in 2 weeks.
● Before:

– many were undistributed scalabilty bottlenecks

– distributable algorithms were complex to manage

– collections larger than 100M pages impractical

● After:
– all are scalable, distributed, easy to operate

– code is substantially smaller & simpler

– should permit multi-billion page collections

