Building a Vertical
Search Site

(using lots of Apache software, of
course)

NODHIYoedy

,/ =

Leading the w‘;l;;
of Open Source

Hi, and welcome to my talk on "Building a vertical search site"

O Just the Facts, Ma’am
Q)

0 ° Ken Krugler - CTO/co-founder of Krugle

=9 * We use lots of Apache S/W at krugle.org

(D — Httpd, Lucene, Nutch, Hadoop, Solr, Xerces,
mod_perl, Commons, Jakarta, Maven, Perl,
(, POI, and others I’m forgetting...sorry.

O e I’ll describe our architecture
< . And the sometimes painful lessons learned

R SCRSNE

Leading the Wave

of Open Source

Krugle is system for using search to help developers.

I'll talk about the details of what we do in the next slide, but the key
points are that we built three different products in a short amount of time,
and on a limited startup budget - and the way we did that was to use
almost exclusively open source.

Along the way we learned some things about both architecture and
open source, and that's what I'll be covering today. I'll focus mostly on
the search aspects, specifically how we use Lucene.

O Three Faces of Krugle
Q)

e Free public site - http://www.krugle.org
@) p

:- e Partner sites
(D — http://sourceforge.krugle.com
n — http://developerworks.krugle.com

O

e Enterprise appliance
Z Ip pp

— http://aws.krugle.com

Baaan NSRS S

Leading the Wave

| of Open Source

I'd mentioned that we built three different products, or what we call the
three faces of Krugle. It's not as schizophrenic as it sounds, since all
three build on the same core technologies, and they provide the same
key functionality for search-driven development.

What do | mean by "search driven development"? It's using search to
help solve development problems, by making the right information
available at the right time. The reason | bring this up is that it's
important to understand what problems we're solving, and thus what
functionality we need. And from that functionality flows the architectural
requirements.

| think it's a too-common problem that we, meaning developers who are
making technology decisions, focus on an architecture that we like. And
that then in turn defines what's easy and what's hard, so the
architectural decision winds up having a lot of say about functionality.
And that then in turn defines what problems you can or can't solve.

We tried to flip that around, and make sure we focused on the problem
space first, and used that to drive features and architecture. Now we did,
early on, make the decision to use open source as much as possible.
This wasn't an architectural decision so much as one based on cost and
time-to-market, but it did wind up influencing many of the subsequent
architectural choices.

O Krugle.org free public site

Search code, projects,
& technical web pages

150,000 projects
2.5billion lines of code

40million web pages

B -

Leading the Wave

of Open Source

So what's the problem we solve with the public site? There are three:

First, there's a lot of open source code out there, but it wasn't easily
searchable.

Second, there's a lot of open source projects too, but it's hard to find
what you're looking for.

Third, there's a lot of technical information, but it's sometimes hard to
find the good stuff.

The common word in all three of the above is "lot". We knew we'd have
to support fast search on many bytes of all three types of data.

Krugle.org demo

http://www.krugle.org

'NODH3Yoedy

R SCRSNE

Leading the Wave

of Open Source

When | do a search on "lucene" in code, I'm going to get a lot of hits.

But I'm really looking for input on performance, so | can restrict to just
comments that mention performance.

But | see a mix of languages, and I'm only interested in Java. And |
don't want to get hits in Lucene itself, just code that uses Lucene.

Then | do a search on "lucene" in projects, where | also want it to be
about databases.

So there's the requirement of fast, flexible search over lots of data. And
you can see that we also have a requirement to provide a very rich,
dynamic browser Ul for exploratory search. So that also creates
architectural requirements. For example, portlets are an interesting
technology, but didn't seem right for this particular Ul. We were going to
need to write a lot of Javascript, where we were in control of the
presentation layer. And we'd want to be able to access the services
using HTTP requests.

Krugle.org Architecture (web)

» Internet -

\—‘\r/—/

' Firewal * Web tier runs Apache
e Also mod_perl

oad Balancer
j& — “glue” for Javascript to
backend RESTful API
Web tier (x4) — Partner APIs

\\ Z/ e “Dirty” side of system
g AP cluster (x3)
i

Database server (x2)

We've covered the problem space, and touched on functionality, so let's
start talking about the actual nuts-and-bolts of the architecture.

This is a pretty standard design, so | won't spend a lot of time on it.

There's the public-facing stuff, which we call the dirty side of the system.
This consists of the top three pieces you see here - industry-strength
firewalls from Juniper, load balancers from F5, and then four mid-range
web servers.

The load balancers support sticky sessions using IP addresses, so a
user keeps getting sent to the same web server once they've
established a connection. This would cause problems if we had lots of
AOL users coming from the same IP address, but fortunately that's not
the case.

When we first went live, we only had two web servers, and we were
exec-ing Perl code. This didn't work so well. Things backed up pretty
quickly under load, mostly due to not using mod_perl. Though we made
things worse by generating authentication tokens using "real"
randomness, which means we quickly ran out of truly random bits. So
then logins stacked up as the system waiting for cosmic rays to
generate more randomness. Pretty quickly we realized that we didn't

nand that laval nf cariirityv

Krugle.org Architecture (API)

I Web tier (x4) .
e API server uses Resin
/ AP! Cluster e Webapps provide
R RESTful API services
I API server
. Filer is big disk array
i i i — LightTPD, NFS
e Searchers run Hadoop,
Filer Code searchers Page searchers
(4 servers/B JVMs) (4 servers) Lucene

The API layer is more interesting, as here we get into things specific to
the service that we provide.

As | mentioned earlier, requests to the API tier come from the web
servers over HTTP. This "Krugle API" is reasonably RESTful. Requests
to read or query "things" are received as HTTP GET requests, and the
response is XML. A "thing" is a file, a project, a user-generated note, a
codespace, and so on.

This REST approach has worked well for us, in general. We've
benefitted from having these loosely coupled web apps, and it's been
pretty easy to integration something like Solr into the mix.

There have been two significant downsides to this approach.

The first is that during development, you often wind up needing to hit
one of these APlIs to really test out your code. So we have a
"development" API server that's available, but only if you're on VPN,
and sometimes it's not available. People are changing code, so things
can and do break. And when that happens, dependent services become
harder to work on.

The other is that automated integration testing is also harder, for the

Krugle API Server

e Webapps running inside of Resin
=Y °* Monitored using Big Brother
(D e NOT the performance bottleneck

oedy

NOD)

e S

Leading the Wave

~ of Open Source

The API server a reasonably fast machine with some redundancy -
things like dual power supplies, NICs, and spare drives. It turns out the
API server isn't the bottleneck for performance, given how we use
remote servers to do the searching. So we don't need a fire-breathing
box here, just something that isn't likely to die.

On this API server, all of the services are running as Java webapps
inside of Resin. Yes, we could have used Tomcat, but at the time when
we were making this decision back in 2005, there was significant
discussion on the mailing lists about Tomcat having stability problems.
Mostly these seemed to be around it hanging at random times, under
load. Resin got high marks here, so that's what we went with.

As you'll see later, we're using Jetty for part of the enterprise product,
and we might wind up switching to it for everything. One of the
advantages of Jetty is that it's better integrated with Maven and Eclipse,
which we use internally.

But in general Resin has done well for us. Occasionally when we're
having problems in the back end due to memory pressure, Resin can
go into a mode where it returns bogus responses to requests - for
example, we'll get an HTTP 200 status code, but no content. And that
makes the middleware Perl code, the XSLT and Javascript all very
unhappy.

The Life of a Files Query

{hnp:!!-::domain::fcauth>ffi|es’?query=[ucene]

/

e e HTTP to Resin
I Firewall, load balancers,
and middleware tier ¢ Files Webapp calls
|
HTTP Request code searchers

e Results are combined

API Server running Resin
Files webapp

* XML response to
caller

Hadoop RPC Call

S

Code Searchers (x4) running
customized Nutch remote
searcher, uses Lucene

-"

Going back to the code search we ran, the /files webapp service uses
bits of Nutch to leverage the Nutch support for distributed searching.
The query gets sent out, using Hadoop RPC, to four code searchers
running a modified version of the Nutch remote searcher code. Each
searcher is a 4GB server with two fast disks, so we run two 32-bit JVMs
on each box, and two remote code searchers.

This lets us split our code index into 8 pieces, each with more than 5M
documents. We randomly distribute the documents, to avoid skewing
the inverse document frequencies. If, for example, we had one of these
code searchers with nothing but Java source, and another searcher
with only one Java file, then hits from the first server would get lower
scores than what we want, and that one file from the second searcher
would get a very high score.

Lucene's remote searcher implementation takes care of adjusting for
this potential skew, but Nutch doesn't. If you take care when building
the indexes, then this isn't a problem, and makes things faster. You can
avoid another remote call required to gather the info you need to adjust
for unbalanced document-level term frequencies.

So getting back to that /files search request. It was sent out to each of
the eight code searchers. They've returned their top N hits to the files
webapp running on the API server. The files service picked out the top

Page queries

e Similar to files service
=Y ° Built using standard Nutch
(D o Different hardware requirements

oedy

ENOD)

e

Leading the Wave

of Open Source

For searching our 40M page tech page crawl, it winds up being very
similar to files service. We using a pretty stock version of Nutch here,
other than converting the Nutch results into our standard XML response
format.

Page query results, like the files service, are cached on the API server
using ehcache.

For the remote page searchers, we only run one JVM on each server,
and we split up the index differently. Here we have one fast disk for the
index, and a bigger, slower drive for the actual page data.

10

O Search Hardware Requirements

Q)

0 ° Find the performance “elbow”
=Y ° Based on target load - so pick baseline
(D * Depends on index size & organization

* More spindles, RAM and cores are good
O e But bottlenecks occur in odd places

=

"

R

' Leading the Wave

~ of Open Source

Now why did we go with 8 code searchers running on 4 servers? We
set up a load test, and tried to figure out where the performance elbow
existed. The question is when does adding servers stop improving
performance significantly, for our target index and load? And for us, this
was what we wound up with. The general rule of thumb seems to be
that you want to have less than 10M documents per index, but that can
vary widely. Why is that?

Note that | said "target index" previously. One of the changes we made,
that let us get away with only 4 servers, was using the same technique
on source code that Nutch uses on common words. If you leave in
common words on a web page, your index size gets bigger and your
search performance drops. But if you index combinations of common
words, then you can avoid this problem. We did that type of thing for
code like "i = 0", and that was a big win.

We'd get an even bigger win if we sorted our index by the static score
we have for each file, and then do early search termination. That's a
contrib that Doug Cutting made to Lucene a while back, but | haven't
heard too much about people using it - or at least not using it
successfully. Since we're currently fast enough, that's on the back
burner.

We could also improve speed by combing more of our fields into combo

11

The Life of a Projects Query

Client request:
‘T’ http:/l<domain>/<auth>/projects ?query=lucene

- e HTTP to Resin
. Fi_rewaIIfLoaq balancers . . .
g Middeware fer * Projects service in
HTTP R
auest framework calls Solr
v
API Server running Resin e Solr returns XML
; Projects service in framework webapp

Local HTTP Request e Framework r emaps
: XML to standard

I Solr webapp format

One schema, multiple types of records

Beyond code files and tech pages, there's a separate set of services
that basically are front-ends to instances of Solr webapps that are also
running inside of Resin.

When the projects service gets a request, it converts it into a standard
Solr query, forwards it to the Solr webapp, then converts the response
into our standard XML response and sends that back to the caller.

This seems inefficient, but given the query rate, the efficiency with
which Resin handles local HTTP requests, and the performance of
Solr/Lucene, this hasn't been an issue for us. We're using an index with
about 150K entries, but I've heard stories on the list of much bigger
indexes running without performance issues under high load.

Solr has been good to us in several different ways. It's easy to set up
and get running, especially with the admin Ul that gives you a view onto
the index and lets you easily run test queries.

There are lots of useful analyzers that you can easily configure, using
Solr's support for a Lucene index "schema".

It's never crashed.

12

Krugle.org Architecture (CPI)

-~ Internet

1Gbit Pipe
v e Code crawl uses bits of
I nop Masier & Nutch, SCM adapters
A * Project data pushed to

Solr from MySQL

* Page crawl uses Nutch,
custom page analyzers

HadooF Slaves (x10)

I Disk Filer

Page Searchers
in API Cluster

A key point to remember here is that we've got three main sources of
data that we use for our public site.

There's code, projects, and tech pages, and we handle each in a
different way.

The diagram on the screen is for the page crawl, since the other two
pieces, while interesting to me, don't really demonstrate exciting uses of
Apache software.

For the page crawl, we use an 11 machine cluster running an older
version of Nutch. It's version 0.8.2 with some customizations, and
Hadoop 0.9.2. Why are we on an older version? Well, more than once
we got bit by really bad bugs when updating to a newer version that
"only had bug fixes". So last January we made the decision to stick with
what we had, because it was good enough.

There's a lot of info on Nutch and Hadoop at the Apache web site, so
I'm going to focus on the customizations we made, and the things we
learned while using Nutch for a medium size web crawl.

First, a quick overview. A "craw!" in Nutch consists of multiple loops. A
loop is a sequence of using the Nutch crawl database, the crawldb, to 13

What’s OPIC?

G: 2.1

'NODH3Yoedy

http://wiki.apache.org/nutch/FixingOpicScoring

Baaan NSRS S

Leading the Wave

| of Open Source

If you're going to use Nutch, you need to understand at least a little bit
about OPIC.

It's the "on-line page importance computation" that Nutch uses both
during the crawl, and as the final static page score. In theory this is an
incremental link analysis score that converges to something similar to a
PageRank score if you recrawl enough. In practice, Nutch's
implementation of this has some serious flaws.

For example, in a stable page crawl, page scores tend to "leak" out of
any leaf pages. So the scores of pages continue to drop. Now since
they're all dropping together, that's not so bad. But then when you inject
new pages, these pages have scores that wind up being much higher
than the older pages.

OPIC is also very sensitive to link farms, As you add new pages, the
total energy of the web graph keeps going up. And so this winds up
fighting with the leakage from leaf pages, which means that you wind up
with spammy, highly linked pages having ridiculously high scores, and
leaft pages have very low scores.

If you aren't recrawling, and you can stay away from link farms, then it's
good enough to help guide the crawl. And the resulting scores are good

anniinh far e hiit wa wind 11in havinn tn aeeantiallv etart narh rarrawl

Krugle partner sites

E= - [BM developerWorks

Services & industry solutions | Support & downloads | My IBM

s developerWorks search results ° Sourceforge'net

T e Amazon Web Services
Yahoo! Dev Network
Collabnet

S
Leading the Wave

s

of Open Source

This is the second face of Krugle, where we provide code search for
partners who have developer networks or communities and code that
they want to make searchable.

These are hosted by us, with customized look and feel. In some cases
we restrict searches to the subset of projects hosted by or associated
with the partner.

Each partner has their own set of challenges:

Sourceforge obviously has the most projects, and the biggest traffic.

Amazon has two types of projects, some of their own, and some hosted
elsewhere that use Amazon web services. They want these searched
as one set of "Amazon plus friendlies" projects.

IBM developerWorks has rapid update requirements. So they send us
regular updates, via an HTTP feed, for new or modified projects. These
need to be processed and pushed to the live site.

15

Krugle Architecture (partners)

~ Internet

Load balancer

Higher level API

. LightTPD caching Wraps RESTful API
servers (x3)

Handled in web tier

Big chunks of Perl

LightTPD cache

. API Server

Our partners make use of some specialized APls provided by Perl code
running in the middleware.

These requests first get round-robin dispatched to one of three
LightTPD servers that use mod_cache to create a high performance
cache. This significantly reduces the load on the API server, by up to
95%. For example, instead of 20 requests/second from a partner hitting
the API layer, it's only 1 request/second.

Requests that are cache misses get sent on the web tier, where
mod_perl executes Perl code that "wraps" our low-level APls. Because
of the standard API to services, it's easy in Perl to create customized
functionality on top of these APls.

16

O Cache as Cache Can
Q)

0 ° Many, many levels of caching
=Y * Avoiding the cache reload hammer

e Consistency can be hard, so we don’t worry
n about it too much

O
-

Baaan NSRS S

| Leading the Wave

| of Open Source

Caching is clearly a big topic, so | won't go into this in depth. I'm just
going to point out the many places where caching does occur
throughout the system.

We've got the automatic file block caching that Linux does for us. As |
mentioned earlier, this works surprisingly well for keeping key parts of a
Lucene index in memory. In fact | know of one major company that
warms up their Lucene-based searchers by cat'ing the index directory to
/dev/null, as a way of forcing it all into the file system cache.

We cache search results at the service level in the API server using
ehcache. And Solr has its own cache for queries.

There's also the LightTPD-based cache for partner APIs that | just
mentioned.

And the web browser Ul caches results during a user session, to avoid
re-fetching content.

One problem that happens is when you start to depend on the cache to
achieve target performance levels, and then the cache goes down or
needs to be reloaded. Suddenly the back-end system gets hit with a
huge load spike, and as we discussed when things start backing up,

17

O Krugle enterprise server

@ @R K

krugle

Krugle inside firewall
Talks to major SCMs
SCM Comment search

Includes public site info

U <55
NSRRI,

Leading the Wave

of Open Source

Finally, we're at the third, and to us most important, face of Krugle.
That's our enterprise product, which we've been working on for almost a
year. It went into trials in May, and recently was released for general
availability.

The enterprise product provides the same type of search-based
functionality as the public site, but inside a company's firewall. So there
are additional data sources - files and comments from internal SCMs,
as well as project meta-data defined using what

The servers we run this on have a fast 150GB Western Digital drive,
4GB RAM, and two dual-core CPUs.

Demo Krugle Enterprise

NODHIYoedy

——— e
Leading the Wave
of Open Source

In some ways it looks very similar to the public site. But you can see
there are three more search channels across the top here. The three on
the right are the same as for the public project, then there are three
more on the left, for internal code, internal projects, and SCM
comments.

19

Krugle Architecture (enterprise)

SCM) Apache hitpd
‘\Sls:EFnﬁ_/ mod_perl
1
// .
v ' e Collapses web tier,
Jetty-based "hub"
system Resin-based AP API server, code
system searchers, filer, and
System admin .
Project definition files, projects, scm DB server into one
comments, reports)
Fetch code & SCM * Separate admin system
comments L i as Jetty-based webapp
Parsefindex code & (GUI, code crawler,
SCM comments .
Snapshot sys config, database)
Snapshot generation

On the public site we've got probably 20 servers actively handling

requests. But for our enterprise product, this all needs to fit into one box.

So what all did we do to squeeze it down?

There's still an Apache httpd server, and mod_perl, but obviously only
one of these instances running.

We still have Resin running webapps to implement the Krugle API, but
there's no remote searchers for code. That all happens inside of the
files webapp. And we don't support page crawling, so we can whack out
a bunch of the Nutch crawl infrastructure.

But we need to add a nice Ul for people who administer the system.
And we also need to automate the code and SCM comment processing.
So there's a Jetty-based webapp that implements the "hub" GUI |
showed you previously, as well as this crawl process.

The configuration, including project definitions, is saved in a MySQL
database that we interact with via Hibernate.

The result of a new or updated crawl is something we call a snapshot,
which is a self-contained set of data stored in a directory. This includes
the Solr index, the code index, the code files, reports generated on the

20

O Key Lessons
Q)

0 ° If it isn’t broke, don’t upgrade
— There’s always a newer version

- . .
(D — That includes the build system

— Motivating project contributors to do things

O * Be prepared to pay for free software
<

' Leading the Wave

~ of Open Source

This is my final summary slide. If | had to do it all over again, what
would be the most important things | wished I'd know in advance?

The first item is avoiding the powerful urge to get the latest released
version. Most of our developers use Macs, and | blame Mac OS X as
the source of that urge. There's the continuous PR blitz to get critical
security fixes. Most of us upgrade regularly, without any problems. But
the same isn't always the case for open source. That 1.3.2 version
might fix some bugs, but it can also add in a gnarly thread lock bug.

| had to include the build system here, because we use Maven. And like
many people who use Maven, it's a love/hate relationship. Sometimes
more hate than love, actually. For example, we'd added a maven-
enforcer-plugin to our build. In July a new version was made available
on the Maven public repo, something like 1.0alpha3. That version
wound up automatically being used, and it had a nasty bug that
prevented inter-module dependencies from resolving correctly. So we
starting generating builds with out-of-date modules. It's the kind of thing
that makes you age faster than you want. The solution there was to
really, really lock down the versions of everything we use that gets
pulled from the public Maven repo, and disable auto-downloading to be
extra safe.

On the subject of what free means, nothing is every really free, and if

21

