
1

Building a Vertical
Search Site

(using lots of Apache software, of
course)

Hi, and welcome to my talk on "Building a vertical search site"

2

Just the Facts, Ma’am

• Ken Krugler - CTO/co-founder of Krugle
• We use lots of Apache S/W at krugle.org

– Httpd, Lucene, Nutch, Hadoop, Solr, Xerces,
mod_perl, Commons, Jakarta, Maven, Perl,
POI, and others I’m forgetting…sorry.

• I’ll describe our architecture
• And the sometimes painful lessons learned

Krugle is system for using search to help developers.

I'll talk about the details of what we do in the next slide, but the key
points are that we built three different products in a short amount of time,
and on a limited startup budget - and the way we did that was to use
almost exclusively open source.

Along the way we learned some things about both architecture and
open source, and that's what I'll be covering today. I'll focus mostly on
the search aspects, specifically how we use Lucene.

3

Three Faces of Krugle

• Free public site - http://www.krugle.org
• Partner sites

– http://sourceforge.krugle.com
– http://developerworks.krugle.com
– http://aws.krugle.com

• Enterprise appliance

I'd mentioned that we built three different products, or what we call the
three faces of Krugle. It's not as schizophrenic as it sounds, since all
three build on the same core technologies, and they provide the same
key functionality for search-driven development.

What do I mean by "search driven development"? It's using search to
help solve development problems, by making the right information
available at the right time. The reason I bring this up is that it's
important to understand what problems we're solving, and thus what
functionality we need. And from that functionality flows the architectural
requirements.

I think it's a too-common problem that we, meaning developers who are
making technology decisions, focus on an architecture that we like. And
that then in turn defines what's easy and what's hard, so the
architectural decision winds up having a lot of say about functionality.
And that then in turn defines what problems you can or can't solve.

We tried to flip that around, and make sure we focused on the problem
space first, and used that to drive features and architecture. Now we did,
early on, make the decision to use open source as much as possible.
This wasn't an architectural decision so much as one based on cost and
time-to-market, but it did wind up influencing many of the subsequent
architectural choices.

4

Krugle.org free public site

• Search code, projects,
& technical web pages

• 150,000 projects
• 2.5billion lines of code
• 40million web pages

So what's the problem we solve with the public site? There are three:

First, there's a lot of open source code out there, but it wasn't easily
searchable.

Second, there's a lot of open source projects too, but it's hard to find
what you're looking for.

Third, there's a lot of technical information, but it's sometimes hard to
find the good stuff.

The common word in all three of the above is "lot". We knew we'd have
to support fast search on many bytes of all three types of data.

5

Krugle.org demo

http://www.krugle.org

When I do a search on "lucene" in code, I'm going to get a lot of hits.

But I'm really looking for input on performance, so I can restrict to just
comments that mention performance.

But I see a mix of languages, and I'm only interested in Java. And I
don't want to get hits in Lucene itself, just code that uses Lucene.

Then I do a search on "lucene" in projects, where I also want it to be
about databases.

So there's the requirement of fast, flexible search over lots of data. And
you can see that we also have a requirement to provide a very rich,
dynamic browser UI for exploratory search. So that also creates
architectural requirements. For example, portlets are an interesting
technology, but didn't seem right for this particular UI. We were going to
need to write a lot of Javascript, where we were in control of the
presentation layer. And we'd want to be able to access the services
using HTTP requests.

6

Krugle.org Architecture (web)

• Web tier runs Apache
• Also mod_perl

– “glue” for Javascript to
backend RESTful API

– Partner APIs
• “Dirty” side of system

We've covered the problem space, and touched on functionality, so let's
start talking about the actual nuts-and-bolts of the architecture.

This is a pretty standard design, so I won't spend a lot of time on it.

There's the public-facing stuff, which we call the dirty side of the system.
This consists of the top three pieces you see here - industry-strength
firewalls from Juniper, load balancers from F5, and then four mid-range
web servers.

The load balancers support sticky sessions using IP addresses, so a
user keeps getting sent to the same web server once they've
established a connection. This would cause problems if we had lots of
AOL users coming from the same IP address, but fortunately that's not
the case.

When we first went live, we only had two web servers, and we were
exec-ing Perl code. This didn't work so well. Things backed up pretty
quickly under load, mostly due to not using mod_perl. Though we made
things worse by generating authentication tokens using "real"
randomness, which means we quickly ran out of truly random bits. So
then logins stacked up as the system waiting for cosmic rays to
generate more randomness. Pretty quickly we realized that we didn't
need that level of security.

The problem of having only two web servers was that when we had to
take a web server out of production to fix something, that left us with
just one live server, which is something you want to avoid if your ops
team is going to sleep well at night.

7

Krugle.org Architecture (API)

• API server uses Resin
• Webapps provide

RESTful API services
• Filer is big disk array

– LightTPD, NFS
• Searchers run Hadoop,

Lucene

The API layer is more interesting, as here we get into things specific to
the service that we provide.

As I mentioned earlier, requests to the API tier come from the web
servers over HTTP. This "Krugle API" is reasonably RESTful. Requests
to read or query "things" are received as HTTP GET requests, and the
response is XML. A "thing" is a file, a project, a user-generated note, a
codespace, and so on.

This REST approach has worked well for us, in general. We've
benefitted from having these loosely coupled web apps, and it's been
pretty easy to integration something like Solr into the mix.

There have been two significant downsides to this approach.

The first is that during development, you often wind up needing to hit
one of these APIs to really test out your code. So we have a
"development" API server that's available, but only if you're on VPN,
and sometimes it's not available. People are changing code, so things
can and do break. And when that happens, dependent services become
harder to work on.

The other is that automated integration testing is also harder, for the
same reason. We wind up baking a lot of pre-canned data into the build
process so that we can deploy the system to a webapp container with
some reasonable set of test data, versus having dependencies on the
development cluster.

So how did a Krugle API request actually get processed?

There's a box on this diagram labeled "API Cluster". A cluster consists
of one API server, four code search servers, four page search servers,
and a filer. All of these machines are commodity hardware (that's a
code phrase for "really cheap") running Red Hat Linux.

We have multiple clusters of servers, which simplifies testing for our
data pushes and more importantly makes it easier to upgrade the
software. During the first year you can expect to be quickly iterating on
the design, which means you often have to revise dependent pieces of
code throughout the system. Keeping things in clusters made that
easier, at the expense of some under-utilization of hardware.

Currently we have four clusters. There's the live cluster, which is
handling all the requests coming from the outside. Then there's a fail-
over or standby cluster, which we use to swap in servers if any one fails
on the live cluster. There's also a "deck" cluster that's in testing, and will
be the next live cluster. These three clusters are constantly being
rotated, as we release new versions of the software and do data
updates.

Since the design has settled down, we're moving away from this
architecture, to something more common where there's a pool of similar
types of servers - for example, multiple API servers that are round-
robin-dispatched to by the load balancer. We can then do the same
thing for the code and page searchers.

8

Krugle API Server

• Webapps running inside of Resin
• Monitored using Big Brother
• NOT the performance bottleneck

The API server a reasonably fast machine with some redundancy -
things like dual power supplies, NICs, and spare drives. It turns out the
API server isn't the bottleneck for performance, given how we use
remote servers to do the searching. So we don't need a fire-breathing
box here, just something that isn't likely to die.

On this API server, all of the services are running as Java webapps
inside of Resin. Yes, we could have used Tomcat, but at the time when
we were making this decision back in 2005, there was significant
discussion on the mailing lists about Tomcat having stability problems.
Mostly these seemed to be around it hanging at random times, under
load. Resin got high marks here, so that's what we went with.

As you'll see later, we're using Jetty for part of the enterprise product,
and we might wind up switching to it for everything. One of the
advantages of Jetty is that it's better integrated with Maven and Eclipse,
which we use internally.

But in general Resin has done well for us. Occasionally when we're
having problems in the back end due to memory pressure, Resin can
go into a mode where it returns bogus responses to requests - for
example, we'll get an HTTP 200 status code, but no content. And that
makes the middleware Perl code, the XSLT and Javascript all very
unhappy.

And surprisingly enough, the API server typically isn't the bottleneck, it's
the remote search servers. If we threw enough search servers at the
problem, I'm sure that eventually we would be limited by this one server,
but that hasn't happened yet.

One more bit of info...we monitor this API server pretty carefully, using
automated tests that generate Big Brother alerts when things get out of
bounds. By "things" I mean how many active threads are running, the
responsiveness of the system to queries, and pressure on the heap.
This last one we calculate by parsing the Resin JVM log to determine
the number of full GCs in the past ten GC events...when this gets too
high, then it's a good sign that the situation is about to turn ugly.

9

The Life of a Files Query

• HTTP to Resin
• Files webapp calls

code searchers
• Results are combined
• XML response to

caller

Going back to the code search we ran, the /files webapp service uses
bits of Nutch to leverage the Nutch support for distributed searching.
The query gets sent out, using Hadoop RPC, to four code searchers
running a modified version of the Nutch remote searcher code. Each
searcher is a 4GB server with two fast disks, so we run two 32-bit JVMs
on each box, and two remote code searchers.

This lets us split our code index into 8 pieces, each with more than 5M
documents. We randomly distribute the documents, to avoid skewing
the inverse document frequencies. If, for example, we had one of these
code searchers with nothing but Java source, and another searcher
with only one Java file, then hits from the first server would get lower
scores than what we want, and that one file from the second searcher
would get a very high score.

Lucene's remote searcher implementation takes care of adjusting for
this potential skew, but Nutch doesn't. If you take care when building
the indexes, then this isn't a problem, and makes things faster. You can
avoid another remote call required to gather the info you need to adjust
for unbalanced document-level term frequencies.

So getting back to that /files search request. It was sent out to each of
the eight code searchers. They've returned their top N hits to the files
webapp running on the API server. The files service picked out the top
hits, then made another request back to some number of the code
searchers to get more info, like summaries, for the hits that made the
cut.

Then the files service uses Dom4J to turn these results into a standard
XML response like what we saw, and that gets returned to the caller.
We also cache this locally, using ehcache.

Finally, in order to display a file when the user clicks on a hit, the files
service has to return the contents of the file. Here we cheat a bit. When
you make a read request to the files service, and specify the file URI,
what you get back is a bunch of meta-data about the file. Things like the
license, the fingerprint value, and so on. One of these bits of info is the
filerURI. This is what you use to make a secondary request, to get the
actual contents of the file. This request gets proxied in the middleware
to an instance of Lighty running on the filer server. This way we can use
Lighty to efficiently serve up static content, without bogging down the
API server.

10

Page queries

• Similar to files service
• Built using standard Nutch
• Different hardware requirements

For searching our 40M page tech page crawl, it winds up being very
similar to files service. We using a pretty stock version of Nutch here,
other than converting the Nutch results into our standard XML response
format.

Page query results, like the files service, are cached on the API server
using ehcache.

For the remote page searchers, we only run one JVM on each server,
and we split up the index differently. Here we have one fast disk for the
index, and a bigger, slower drive for the actual page data.

11

Search Hardware Requirements

• Find the performance “elbow”
• Based on target load - so pick baseline
• Depends on index size & organization
• More spindles, RAM and cores are good
• But bottlenecks occur in odd places

Now why did we go with 8 code searchers running on 4 servers? We
set up a load test, and tried to figure out where the performance elbow
existed. The question is when does adding servers stop improving
performance significantly, for our target index and load? And for us, this
was what we wound up with. The general rule of thumb seems to be
that you want to have less than 10M documents per index, but that can
vary widely. Why is that?

Note that I said "target index" previously. One of the changes we made,
that let us get away with only 4 servers, was using the same technique
on source code that Nutch uses on common words. If you leave in
common words on a web page, your index size gets bigger and your
search performance drops. But if you index combinations of common
words, then you can avoid this problem. We did that type of thing for
code like "i = 0", and that was a big win.

We'd get an even bigger win if we sorted our index by the static score
we have for each file, and then do early search termination. That's a
contrib that Doug Cutting made to Lucene a while back, but I haven't
heard too much about people using it - or at least not using it
successfully. Since we're currently fast enough, that's on the back
burner.

We could also improve speed by combing more of our fields into combo
fields. Because we parse the code, we wind up with multiple fields for
each file. For example, there's a code field, a comment field, a function
call field, a function def field, a class def field, a filename field, and so
on. When you do a search, this currently generates a very big query. If
we combined fields that used similar analyzers, we could have a more
efficient query at the expense of a slightly bigger index.

And finally, Nutch doesn't support replication currently, where the index
is duplicated on multiple remote search servers. But we could easily
implement that ourselves, by using round-robin dispatching from pools
set up in our load balancer, where each pool has N instances of code
searchers with the same index.

Now my point here isn't to dive into the details of Lucene indexing. It's
to point out the very big dependency your architecture and scaling
requirements will have on your index. And not just the index size in
terms of document count, but how it's organized, and what techniques
you can use to improve the speed of the search.

And finally, it's hard to know where problems will pop up. The current
performance bottleneck for us in code search is the generation of
summaries. This is because all of the code searchers get the actual file
data via an NFS cross-mount to the filer. Given the size of the data, we
didn't want to keep it on the local disk, but this means that multiple
threads from all 8 code searchers can be hitting the filer at the same
time during summarizing, so we wind up being I/O bound by the filer
disk seek time. We could shift the bottleneck to a different location by
putting the code on the code searchers, or by hooking up a faster and
more expensive storage area network.

As a side point, if I was going to do this again, I'd have each box
configured with four fast SATA-II drives from Western Digital, four dual-
core CPUs, and 8GB of RAM. Then I could run four JVMs on each
server, and get equivalent performance with half the number of physical
servers to rack, cable, maintain, and eventually replace.

One of the things we learned during performance work was that you
wanted to avoid having multiple searchers using the same spindle, as
that led to lots of contention, and thus lots of extra seeks, which killed
performance.

I know so of you are wondering about keeping the index in RAM, and
thus avoiding any disk issues. We tried that on a server with lots of
memory, using Lucene's RAMDirectory, and were surprised by the
results. Once the file system buffers are loaded with the index, a
RAMDirectory or a Memory mapped directory was about the same
speed as a vanilla FSDirectory. In fact, without a lot of extra memory,
things were actually slower. It seemed as though the RAM directory
approach wound up chewing a lot of memory to instantiate all of the
Java objects containing the data.

12

The Life of a Projects Query

• HTTP to Resin
• Projects service in

framework calls Solr
• Solr returns XML
• Framework remaps

XML to standard
format

Beyond code files and tech pages, there's a separate set of services
that basically are front-ends to instances of Solr webapps that are also
running inside of Resin.

When the projects service gets a request, it converts it into a standard
Solr query, forwards it to the Solr webapp, then converts the response
into our standard XML response and sends that back to the caller.

This seems inefficient, but given the query rate, the efficiency with
which Resin handles local HTTP requests, and the performance of
Solr/Lucene, this hasn't been an issue for us. We're using an index with
about 150K entries, but I've heard stories on the list of much bigger
indexes running without performance issues under high load.

Solr has been good to us in several different ways. It's easy to set up
and get running, especially with the admin UI that gives you a view onto
the index and lets you easily run test queries.

There are lots of useful analyzers that you can easily configure, using
Solr's support for a Lucene index "schema".

It's never crashed.

And Solr also makes it pretty easy to do safe and efficient updates to
the live index.

We've run into four challenges with Solr.

First, it wasn't possible to embed Solr into an existing webapp. There
have been contribs made that now enable this, so that limitation is
going away.

Second, it didn’t support distributed search, which is something we want,
so we can store project data with the code index. Again, somebody has
made a recent contrib to help solve this limitation.

The third issue isn't really a Solr problem. Solr uses the Lucene query
parser, and we wound up having to spend time figuring out how to
"escape" words and characters that a user might enter which would
confuse the query parser. We wanted to still have '+' and '-', but we
didn't need to support grouping of queries using parenthesis, for
example. I know Hoss has a more forgiving parser that's part of his
DismaxRequestHandler, but that wasn't available when we were
working on this problem.

We also ran into problems getting HTML data into Solr, due to all of the
escaping/unescaping that needs to happen for correct round-trip
handling. Solr requests and responses are XML, so if you have markup
data inside of the Solr XML wrapper, you need to escape it so it doesn't
confuse things. But our services return XML too, and the XML we return
needs to be processed in some cases using XSLT, so we had fun
getting all of the conversion steps set up properly.

13

Krugle.org Architecture (CPI)

• Code crawl uses bits of
Nutch, SCM adapters

• Project data pushed to
Solr from MySQL

• Page crawl uses Nutch,
custom page analyzers

A key point to remember here is that we've got three main sources of
data that we use for our public site.

There's code, projects, and tech pages, and we handle each in a
different way.

The diagram on the screen is for the page crawl, since the other two
pieces, while interesting to me, don't really demonstrate exciting uses of
Apache software.

For the page crawl, we use an 11 machine cluster running an older
version of Nutch. It's version 0.8.2 with some customizations, and
Hadoop 0.9.2. Why are we on an older version? Well, more than once
we got bit by really bad bugs when updating to a newer version that
"only had bug fixes". So last January we made the decision to stick with
what we had, because it was good enough.

There's a lot of info on Nutch and Hadoop at the Apache web site, so
I'm going to focus on the customizations we made, and the things we
learned while using Nutch for a medium size web crawl.

First, a quick overview. A "crawl" in Nutch consists of multiple loops. A
loop is a sequence of using the Nutch crawl database, the crawldb, to
generate a sorted list of pages to fetch, then fetching some number of
these, parsing the resulting pages, scoring the pages, extracting
outlinks, and updating the crawldb.

When we've crawled enough, whatever that means, we index the
resulting pages, generate a set of four indexes, and save these off to a
filer. Remember how I mentioned that we'd run into some really bad
Nutch and Hadoop bugs? Well, this filer is our insurance policy, and it's
saved our butts more than once. That includes incidences of friendly fire,
like when somebody accidentally deleted everything from the Hadoop
distributed file system.

Now our goal is to crawl the "technical web". This is the subset of all 20
gazillion pages out there that contain technical information which we
think would be useful to a developer. The way we do this is by
analyzing each page, using some fairly straightforward techniques, to
decide how "technical" it is. We use term vector similarity, where the
models we use are the result of harvesting training data from various
sections of Wikipedia. Using this approach, we can come up with a
number of different classifiers, for different technical areas, and thus
derive a more accurate score for a page.

That page score can still be wildly wrong, but because this score flows
into the OPIC algorithm, individual page errors aren't such a big deal.

I'll talk about the OPIC algorithm in a bit, if there's enough interest. But
key point for us is that each page's "tech score" flows via outlinks from
that page to all the other pages. And for unfetched pages, this score
then is used to sort pages for fetching. We typically put a pretty tight
cap on the number of pages we fetch during each loop. By doing this,
we get a more focused crawl, at the expense of our overall crawl rate in
terms of pages per minute.

The major crawl problems aren't related to Nutch, Hadoop, or our
operations. It's dealing with things like honey pot sites that suck a
crawler in to an endless maze of artificial links. Or really badly broken
sites that trickle multi-megabyte PDFs back to us at 5 kilobits/second.
We seem to come across this latter problem more often than I was
expecting, probably because there are a lot of wanna-be geeks running
their "Big House of Code" server in a basement with a dial-up
connection.

So it often becomes a personnel issue - how do you find that anal
retentive crawlmeister who actually enjoys baby-sitting the web crawl
for days on end? In our case, one of the developers made the mistake
of taking a bio break at the wrong time, so he got the raw deal.

14

What’s OPIC?

http://wiki.apache.org/nutch/FixingOpicScoring

If you're going to use Nutch, you need to understand at least a little bit
about OPIC.

It's the "on-line page importance computation" that Nutch uses both
during the crawl, and as the final static page score. In theory this is an
incremental link analysis score that converges to something similar to a
PageRank score if you recrawl enough. In practice, Nutch's
implementation of this has some serious flaws.

For example, in a stable page crawl, page scores tend to "leak" out of
any leaf pages. So the scores of pages continue to drop. Now since
they're all dropping together, that's not so bad. But then when you inject
new pages, these pages have scores that wind up being much higher
than the older pages.

OPIC is also very sensitive to link farms, As you add new pages, the
total energy of the web graph keeps going up. And so this winds up
fighting with the leakage from leaf pages, which means that you wind up
with spammy, highly linked pages having ridiculously high scores, and
leaft pages have very low scores.

If you aren't recrawling, and you can stay away from link farms, then it's
good enough to help guide the crawl. And the resulting scores are good
enough for us, but we wind up having to essentially start each recrawl
from scratch.

15

Krugle partner sites

• IBM developerWorks
• Sourceforge.net
• Amazon Web Services
• Yahoo! Dev Network
• Collabnet

This is the second face of Krugle, where we provide code search for
partners who have developer networks or communities and code that
they want to make searchable.

These are hosted by us, with customized look and feel. In some cases
we restrict searches to the subset of projects hosted by or associated
with the partner.

Each partner has their own set of challenges:

Sourceforge obviously has the most projects, and the biggest traffic.

Amazon has two types of projects, some of their own, and some hosted
elsewhere that use Amazon web services. They want these searched
as one set of "Amazon plus friendlies" projects.

IBM developerWorks has rapid update requirements. So they send us
regular updates, via an HTTP feed, for new or modified projects. These
need to be processed and pushed to the live site.

16

Krugle Architecture (partners)

• Higher level API
• Wraps RESTful API
• Handled in web tier
• Big chunks of Perl
• LightTPD cache

Our partners make use of some specialized APIs provided by Perl code
running in the middleware.

These requests first get round-robin dispatched to one of three
LightTPD servers that use mod_cache to create a high performance
cache. This significantly reduces the load on the API server, by up to
95%. For example, instead of 20 requests/second from a partner hitting
the API layer, it's only 1 request/second.

Requests that are cache misses get sent on the web tier, where
mod_perl executes Perl code that "wraps" our low-level APIs. Because
of the standard API to services, it's easy in Perl to create customized
functionality on top of these APIs.

17

Cache as Cache Can

• Many, many levels of caching
• Avoiding the cache reload hammer
• Consistency can be hard, so we don’t worry

about it too much

Caching is clearly a big topic, so I won't go into this in depth. I'm just
going to point out the many places where caching does occur
throughout the system.

We've got the automatic file block caching that Linux does for us. As I
mentioned earlier, this works surprisingly well for keeping key parts of a
Lucene index in memory. In fact I know of one major company that
warms up their Lucene-based searchers by cat'ing the index directory to
/dev/null, as a way of forcing it all into the file system cache.

We cache search results at the service level in the API server using
ehcache. And Solr has its own cache for queries.

There's also the LightTPD-based cache for partner APIs that I just
mentioned.

And the web browser UI caches results during a user session, to avoid
re-fetching content.

One problem that happens is when you start to depend on the cache to
achieve target performance levels, and then the cache goes down or
needs to be reloaded. Suddenly the back-end system gets hit with a
huge load spike, and as we discussed when things start backing up,
they back up in a hurry. So whenever possible we try to gracefully age
the cache entries.

Now with all these different caches, keeping them in sync could be a
problem. But luckily for us, having caches that are out-of-sync generally
isn't a problem, because the browser UI gracefully handles cases where
an expected resource suddenly isn't available. And that's the most
common issue that occurs. So rather than worrying about 100%
consistency, we handle it downstream, which winds up being a lot
easier.

18

Krugle enterprise server

• Krugle inside firewall
• Talks to major SCMs
• SCM Comment search
• Includes public site info

Finally, we're at the third, and to us most important, face of Krugle.
That's our enterprise product, which we've been working on for almost a
year. It went into trials in May, and recently was released for general
availability.

The enterprise product provides the same type of search-based
functionality as the public site, but inside a company's firewall. So there
are additional data sources - files and comments from internal SCMs,
as well as project meta-data defined using what

The servers we run this on have a fast 150GB Western Digital drive,
4GB RAM, and two dual-core CPUs.

19

Demo Krugle Enterprise

In some ways it looks very similar to the public site. But you can see
there are three more search channels across the top here. The three on
the right are the same as for the public project, then there are three
more on the left, for internal code, internal projects, and SCM
comments.

20

Krugle Architecture (enterprise)

• Collapses web tier,
API server, code
searchers, filer, and
DB server into one

• Separate admin system
as Jetty-based webapp
(GUI, code crawler,
sys config, database)

On the public site we've got probably 20 servers actively handling
requests. But for our enterprise product, this all needs to fit into one box.
So what all did we do to squeeze it down?

There's still an Apache httpd server, and mod_perl, but obviously only
one of these instances running.

We still have Resin running webapps to implement the Krugle API, but
there's no remote searchers for code. That all happens inside of the
files webapp. And we don't support page crawling, so we can whack out
a bunch of the Nutch crawl infrastructure.

But we need to add a nice UI for people who administer the system.
And we also need to automate the code and SCM comment processing.
So there's a Jetty-based webapp that implements the "hub" GUI I
showed you previously, as well as this crawl process.

The configuration, including project definitions, is saved in a MySQL
database that we interact with via Hibernate.

The result of a new or updated crawl is something we call a snapshot,
which is a self-contained set of data stored in a directory. This includes
the Solr index, the code index, the code files, reports generated on the
code, and anything else that we serve up via the Krugle API on an
enterprise box.

By creating this static, self-contained, optimized view of the data we can
efficiently handle search requests, and avoid some of the data
synchronization issues that force us to currently rotate entire clusters of
servers on the public site.

21

Key Lessons

• If it isn’t broke, don’t upgrade
– There’s always a newer version
– That includes the build system

• Be prepared to pay for free software
– Motivating project contributors to do things

This is my final summary slide. If I had to do it all over again, what
would be the most important things I wished I'd know in advance?

The first item is avoiding the powerful urge to get the latest released
version. Most of our developers use Macs, and I blame Mac OS X as
the source of that urge. There's the continuous PR blitz to get critical
security fixes. Most of us upgrade regularly, without any problems. But
the same isn't always the case for open source. That 1.3.2 version
might fix some bugs, but it can also add in a gnarly thread lock bug.

I had to include the build system here, because we use Maven. And like
many people who use Maven, it's a love/hate relationship. Sometimes
more hate than love, actually. For example, we'd added a maven-
enforcer-plugin to our build. In July a new version was made available
on the Maven public repo, something like 1.0alpha3. That version
wound up automatically being used, and it had a nasty bug that
prevented inter-module dependencies from resolving correctly. So we
starting generating builds with out-of-date modules. It's the kind of thing
that makes you age faster than you want. The solution there was to
really, really lock down the versions of everything we use that gets
pulled from the public Maven repo, and disable auto-downloading to be
extra safe.

On the subject of what free means, nothing is every really free, and if
you expect to somehow magically reduce your software development
costs to zero by using open source, you're going to be disappointed.
Yes, by using open source it reduced our startup costs significantly. But
the bigger advantage for us was that we could quickly get changes
made and bugs fixed, either by doing it ourselves, or in many cases
paying a consultant to do it for us.

This aspect of paying to get things done, or maybe done sooner than it
would have otherwise, is an interesting trend that I think will accelerate
over time. If you're a commercial company like Krugle, having the ability
to figure out who knows their stuff by watching the mailing lists, and
then contracting with the right person to make the critical change in a
timely manner - that's nirvana.

If we were using a commercial package, what? we file a change request?
there's no way it would happen in time for us.

And hiring a random consultant to implement the functionality from
scratch? Talk about a crap shoot.

The nature of open source projects, especially at Apache, means we
have the ability to identify the right person, and we have the right to
modify the code, both of which are critical.

As a side note, many of the consultants we work with have used a two-
tier pricing model. If they make changes that get contributed back, it's a
lower rate. And in most cases that's the route we've taken. Not only is it
cheaper, but if you're worrying about helping out a competitor by
improving the project for everybody, then you're worrying about the
wrong things. You should be focused on what you do, not what your
competitors might do.

