
Oxford University Software Engineering Centre

Module on Web Services and SOA

Andrew Martin

August 2006

The course as presently delivered as specified as follows.

Learning Outcomes

Those completing the course will :-

1. understand the notion of a service-based architecture, and be able to describe the
strengths and weaknesses of this approach;

2. be able to implement and deploy simple web services using one or more development
platforms;

3. be able to define and design applications as combinations of services, with a suit-
able treatment of security, and be able to discuss the emergent properties of those
composite services; and

4. know the research context and some potential future directions for these services and
architectures.

Course Contents/Syllabus

The course presupposes a basic understanding of XML schema and XML namespaces. Practi-
cal exercises entail a limited amount of Java programming, usually by extending and adapt-
ing supplied skeleton code. The design discussion assumes a basic reading knowledge of
UML.

Topics:

1. Web-based architectures (1 day)

Considers the idea of doing distributed computing using the technologies of the World-
Wide Web, exemplified by the REST architectural style. Reviews the properties of those
technologies (with reference to the underlying protocol stack), and the extent to which
HTTP 1.2 successfully implements Fielding’s pure REST ideas in any case. The chief
shortcoming of the approach may be summed up as saying that the middleware layer
is slender, and in places poorly abstracted, so that although REST based services are
popular, they are necessarily unlikely to scale very well.

This is followed up with a practical exercise in which students use and implement
REST-style services, and observe the data passing on the wire, using a TCP monitor.

2. Service-oriented architectures (1 day)

Begins by considering the notion of software construction using a collection of compo-
nents. Reiterates this using Erl’s ‘principles of service orientation’: Service reusability

1



– Service contract – Service loose coupling – Service abstraction – Service composability
– Service autonomy – Service statelessness – Service discoverability.

Describes the ‘publish–find–bind’ model, as supported by SOAP, WSDL, UDDI. Empha-
sis on the first two.

Explore toolkits for writing web services; specifically Axis. Practical exercise using
Axis.

3. Structures (half day)

A discussion, mostly at quite a high level of abstraction, of Message Exchange Pat-
terns; Co-ordination; Atomic Transactions; Business Processes; Orchestration; Chore-
ography; Addressing; Reliable Messaging; Correlation; Notification; Policy. Mention
of relevant WS-* specifications in passing, exploring how (tags, protocols, etc.) these
achieve their goals.

Includes a very high level (4/5 slides) consideration of workflow concepts.

Discussion of state and statelessness. (REST lecture has already made a virtue of
stateless services.) This flows into a discussion of Grid services, and a mention of
WS-ResourceFramework.

4. Security (half day)

This topic begins with a brief review of the nature of security requirements, and basic
technologies such as encryption and PKI for achieving these.

We then discuss various ad hoc approaches (such as the web service access tokens
used by Google and Amazon), together with HTTP authentication and transport layer
security.

XML encryption and XML signature enable us to discuss message level security, and
hence WS-Security etc. We sketch the four-year-old web services security roadmap, and
discuss the parts which have actual prospects of becoming concrete. Introduce the
idea of security token service, push and pull models for security tokens, generalized
into the ideas of PDP and PEP.

Brief mention of WS-Policy as a means of communicating security policies; SAML as
an expressive notation for writing security tokens; XACML as a language for writing
detailed access rules. Reflection on whether this level of detail is really feasible or
desirable in most application contexts.

5. Engineering Service Oriented Architectures (half day, plus extended practical exercise,
incorporating some of the earlier topics also)

Questions of what a SOA lifecycle might look like. How to describe services; how to
test them. UML diagrams for recording workflow, deployment, interactions. (UML as
a surrogate for abstract BPEL.) Strength of the ‘assembly of services’ model.

Semantic web as an attempt to allow persistent distributed references to concepts
and ideas; language for describing services and data (RDF/RDFS/OWL). Semantic web
services (OWL-S) as a means to use these ideas for building services.

Observations on the shortcomings of these ideas for real engineering; comparison
with the prospects for using something akin to Z for the task.

6. Interoperability and Prospects (quarter day)

Largely a wrap-up session. Brief consideration of WS-I as a unifying force for defining
de facto interoperability. Discussion of strengths and weaknesses of the WS ideas
as they stand; extent to which the early vision can be/is being implemented; extent

2



to which it was amiss. How to avoid building OO systems using SOA; loose coupling,
coarse-grained interfaces; few messages. Good and well-defined behaviour in the pres-
ence of faults.

Textbooks/Reading List

1. Thomas Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Prentice-
Hall, 2005.

Quite a thorough treatment of all the topics; excruciating detail in places,
perhaps repetitive.

2. Gustavo Alonso, Fabio Casati, Harumi Kuno and Vijay Machiraju, Web Services: Con-
cepts, Architectures and Applications, Springer 2004.

This is the current course textbook — one of the few genuinely academic
texts I’ve found. It is decidedly verbose, somewhat outdated already, but
nevertheless quite a treatment of topics for their own sake, and also showing
how the present technologies have been arrived at.

3. Munindar P. Singh and Michael N. Huhns, Service-Oriented Computing Semantics, Pro-
cesses, Agents, Wiley 2005.

I found this book quite recently: it’s gratifying that it takes a broadly similar
approach to my own course design! It’s quite a large book, but would, I
suspect, make quite a good text for the course as it stands now.

4. Dan Woods and Thomas Mattern Enterprise SOA: Designing IT for Business Innovation,
O’Reilly, 2006.

Definitely at the ‘business’ end of the topic; heavily influenced by the BEA
approach to SOA.

5. Eve Andersson, Philip Greenspun, and Andrew Grumet Software Engineering for Inter-
net Applications

An MIT undergraduate text; too basic (or too web-oriented; not enough SOA)
for our task here. Also one of the most edgy textbooks I have ever encoun-
tered.

3


