
NuttX RTOS

Gregory Nutt

NuttX
Realtime
Programming

 Interrupts
 Cooperative Scheduling
 Tasks
 Work Queues
 Realtime Schedulers

 Interrupts
 Cooperative Scheduling
 Tasks
 Work Queues
 Realtime Schedulers

OverviewOverviewOverviewOverview

Real Time == DeterministicReal Time == DeterministicReal Time == DeterministicReal Time == Deterministic

Real time does not mean “fast”Real time does not mean “fast”

Stimulus Response

Response Latency

Real time systems have Deadlines Real time systems have Deadlines

Deadline

Bare Metal / No-OSBare Metal / No-OS
Single InterruptSingle Interrupt

Bare Metal / No-OSBare Metal / No-OS
Single InterruptSingle Interrupt

Very Simple!Very Simple!

External Stimulus generates Hardware Interrupt Request (IRQ)

Hardware
Response
from Software
Processing

Response Latency

Deterministic if interrupts never disabled. Deterministic if interrupts never disabled.

Hardware
Interrupt
 Vector

Software Processing
“Interrupt Handler”

Hardware
Interrupt
 Return

Hardware Interrupt
Processing may be
delayed if interrupts

disabled.

Hardware Interrupt
Processing may be
delayed if interrupts

disabled.

Bare Metal / No-OSBare Metal / No-OS
Nested InterruptsNested Interrupts

Bare Metal / No-OSBare Metal / No-OS
Nested InterruptsNested Interrupts

Single Interrupt Handler

High Priority

Response Latency

Response Latency

No OS way: Extensive interrupt processing, prioritized interrupts
and, maybe, a main loop.
No OS way: Extensive interrupt processing, prioritized interrupts
and, maybe, a main loop.

Medium Priority

Low Priority

Deterministic? No
Meet Deadlines? Maybe
Deterministic? No
Meet Deadlines? Maybe

Bare Metal / No-OSBare Metal / No-OS
Cooperative SchedulingCooperative Scheduling

Bare Metal / No-OSBare Metal / No-OS
Cooperative SchedulingCooperative Scheduling

Main,
Background

Loop

Task G

Task F

Task E

Task D

Task A

Task B

Task C

 Round-Robin
 Non-premptive
 Cooperative

Scheduling
 State machines
 ad hoc strategies

 Round-Robin
 Non-premptive
 Cooperative

Scheduling
 State machines
 ad hoc strategies Non-deterministic!Non-deterministic!

RTOS way:
 Minimal work performed in interrupt handlers
 Interrupt handlers only signal events to tasks
 RTOS scheduler manages realtime behavior
 Prioritized interrupts replaced with prioritized tasks
 No benefit in nesting interrupts

RTOS way:
 Minimal work performed in interrupt handlers
 Interrupt handlers only signal events to tasks
 RTOS scheduler manages realtime behavior
 Prioritized interrupts replaced with prioritized tasks
 No benefit in nesting interrupts

RTOS InterruptsRTOS InterruptsRTOS InterruptsRTOS Interrupts

No OS way: Extensive interrupt processing, prioritized interrupts and,
maybe, a main loop.
No OS way: Extensive interrupt processing, prioritized interrupts and,
maybe, a main loop.

Signal Task ASignal Task A
Signal Task BSignal Task B

Signal Task CSignal Task C

Signal Task DSignal Task D
Signal Task ESignal Task E

Interrupt Interrupt Interrupt Interrupt Interrupt

 Task = A thread within an environment (like a Linux process)
 Thread = “Normal” sequence of instruction execution

 Each thread has its own stack
 Each thread has an execution priority managed by the OS
 Each thread is a member of a “task group”
 Share resources (like a Linux process)
 Can wait for events or resource availability

 Threads communicate via Interprocess Communications (IPC):
 POSIX Message Queues, Signals, Counting semaphores, etc.
 Standard / Linux compatible
 NuttX supports use of standard IPCs from interrupt handlers

 Task = A thread within an environment (like a Linux process)
 Thread = “Normal” sequence of instruction execution

 Each thread has its own stack
 Each thread has an execution priority managed by the OS
 Each thread is a member of a “task group”
 Share resources (like a Linux process)
 Can wait for events or resource availability

 Threads communicate via Interprocess Communications (IPC):
 POSIX Message Queues, Signals, Counting semaphores, etc.
 Standard / Linux compatible
 NuttX supports use of standard IPCs from interrupt handlers

Properties of NuttX TasksProperties of NuttX TasksProperties of NuttX TasksProperties of NuttX Tasks

Task
Suspended,
Waiting for
Next event

Task
Suspended,
Waiting for

event

RTOS Interrupt ProcessingRTOS Interrupt ProcessingRTOS Interrupt ProcessingRTOS Interrupt Processing

Interrupt
Handler

Thread awakened,
Processes interrupt related event

RTOS Scheduler
Reassess next

ready-to-run thread

RTOS Scheduler
Reassess next

ready-to-run thread

Signals thread via IPC

Resumes thread if highest
priority, ready-to-run

Stimulus Response

Work QueuesWork QueuesWork QueuesWork Queues

Worker
Thread

“Bottom half”

 Priority Qeue
 Non-premptive
 Very high priority
 Inappropriate for

extended processing

 Priority Qeue
 Non-premptive
 Very high priority
 Inappropriate for

extended processing

Prioritized
Work

Queue

Use with care!Use with care!
Non-deterministic!Non-deterministic!

Interrupt
Handler

“Top Half”

Defer more
extended
interrupt
processing to
Worker Thread

High Priority
Work Queue
High Priority
Work Queue

High Priority
Work Queue
High Priority
Work Queue

Multiple Work QueuesMultiple Work QueuesMultiple Work QueuesMultiple Work Queues

High Priority
Work Queue
High Priority
Work Queue

Multiple
Low Priority

Work Queues

Multiple
Low Priority

Work Queues

 Single high priority work queue
 Intended for interrupt “bottom half”
 Should be highest priority

 Single high priority work queue
 Intended for interrupt “bottom half”
 Should be highest priority

 Multiple low priority work queues
 Support priority inheritance
 Use to implement asynchronous

I/O (AIO)

 Multiple low priority work queues
 Support priority inheritance
 Use to implement asynchronous

I/O (AIO)

P
R
I
O
R
I
T
Y

Thread poolThread pool

 Stimulus Event
– Hardware interrupt processing.
– Delay may be extended if interrupts disabled

 Software interrupt processing
– Thread state save (for Context Switch)

 Interrupt handler processing
– IPC
– Task execution may delayed if it does not have priority

 Interrupt return
– State restore OR Interrupt Context Switch

 Thread processing
– Output response

 Stimulus Event
– Hardware interrupt processing.
– Delay may be extended if interrupts disabled

 Software interrupt processing
– Thread state save (for Context Switch)

 Interrupt handler processing
– IPC
– Task execution may delayed if it does not have priority

 Interrupt return
– State restore OR Interrupt Context Switch

 Thread processing
– Output response

Components of Response LatencyComponents of Response LatencyComponents of Response LatencyComponents of Response Latency

Asynchronous Context Switch == Interrupt Context Switch
Critical part of realtime response
VERY efficient in NuttX… Near zero additional overhead

Asynchronous Context Switch == Interrupt Context Switch
Critical part of realtime response
VERY efficient in NuttX… Near zero additional overhead

Synchronous vs Asynchronous Context SwitchSynchronous vs Asynchronous Context SwitchSynchronous vs Asynchronous Context SwitchSynchronous vs Asynchronous Context Switch

Synchronous Context Switch
Thread relinquishes CPU by waiting for event
NOT a critical part of realtime response
But may be important to overall performance and throughput

Synchronous Context Switch
Thread relinquishes CPU by waiting for event
NOT a critical part of realtime response
But may be important to overall performance and throughput

 Software interrupt processing overhead
– Thread state save and restore (for interrupt Context Switch)

 ARM Cortex-M*
– Can support direct vector to C-code
– Zero (software) latency

 NuttX implements with:
– Higher interrupt priority
– Direct vector to C code
– Indirect interrupt context switches via PENDSV

 Important to support:
– Very high rate interrupts
– Interrupts with very low latency requirements

 Software interrupt processing overhead
– Thread state save and restore (for interrupt Context Switch)

 ARM Cortex-M*
– Can support direct vector to C-code
– Zero (software) latency

 NuttX implements with:
– Higher interrupt priority
– Direct vector to C code
– Indirect interrupt context switches via PENDSV

 Important to support:
– Very high rate interrupts
– Interrupts with very low latency requirements

High Priority, Zero Latency InterruptsHigh Priority, Zero Latency InterruptsHigh Priority, Zero Latency InterruptsHigh Priority, Zero Latency Interrupts

Realtime behavior realized via OS scheduler

RTOS provides tools only enable realtime designs
But a bad application design may still not be realtime

Realtime behavior realized via OS scheduler

RTOS provides tools only enable realtime designs
But a bad application design may still not be realtime

Realtime SchedulersRealtime SchedulersRealtime SchedulersRealtime Schedulers

Scheduling Disciplines:
Traditional / POSIX Schedulers
Deadline Scheduler (and other modern schedulers)

Rate Monotonic Scheduling (RMS)

Scheduling Disciplines:
Traditional / POSIX Schedulers
Deadline Scheduler (and other modern schedulers)

Rate Monotonic Scheduling (RMS)

 Example: Linux SCHED_DEADLINE
– Earliest Deadline First (EDF)

 Example: Linux SCHED_DEADLINE
– Earliest Deadline First (EDF)

Deadline SchedulersDeadline SchedulersDeadline SchedulersDeadline Schedulers

 Highly managed
 High processing overhead
 Complex
 Difficult to configure correctly
 Non-standard
 Not commonly used in a small RTOS
 Not currently supported by NuttX

 Highly managed
 High processing overhead
 Complex
 Difficult to configure correctly
 Non-standard
 Not commonly used in a small RTOS
 Not currently supported by NuttX

Standard Schedulers specified at OpenGroup.org:

SCHED_FIFO
 For Managed latency
 Supports Rate Monotonic Scheduling (RMS)

SCHED_RR
 Not realtime
 Time-slicing
 Balanced throughput

SCHED_SPORADIC
 Dynamic prioritization to achieve processing budget
 For background tasks with guaranteed bandwidth

Response latency vs. Throughput trade-offs

Standard Schedulers specified at OpenGroup.org:

SCHED_FIFO
 For Managed latency
 Supports Rate Monotonic Scheduling (RMS)

SCHED_RR
 Not realtime
 Time-slicing
 Balanced throughput

SCHED_SPORADIC
 Dynamic prioritization to achieve processing budget
 For background tasks with guaranteed bandwidth

Response latency vs. Throughput trade-offs

Primary NuttX Specification: OpenGroup.orgPrimary NuttX Specification: OpenGroup.org

Standard / POSIX SchedulersStandard / POSIX SchedulersStandard / POSIX SchedulersStandard / POSIX Schedulers

Can achieve realtime behavior under
certain circumstances:

 Strict priority scheduling
 Static priorities
 Priorities assigned according to the rate

monotonic conventions

Can achieve realtime behavior under
certain circumstances:

 Strict priority scheduling
 Static priorities
 Priorities assigned according to the rate

monotonic conventions

And this unrealistic assumption:

 No resource sharing
 No waiting for resources
 Example: hardware, queue, etc.
 No semaphores or locks.
 No disabling pre-emption
 No disabling interrupts
 No critical sections

And this unrealistic assumption:

 No resource sharing
 No waiting for resources
 Example: hardware, queue, etc.
 No semaphores or locks.
 No disabling pre-emption
 No disabling interrupts
 No critical sections

Rate Monotonic SchedulingRate Monotonic SchedulingRate Monotonic SchedulingRate Monotonic Scheduling

Threads with shorter
periods/deadlines
are given higher
priorities

Threads with shorter
periods/deadlines
are given higher
priorities

Priority Inversion /
Priority Inheritance
Priority Inversion /
Priority Inheritance

Priority InversionPriority InversionPriority InversionPriority Inversion

Low Priority
Task

Low Priority
Task

Medium
PriorityTask

Medium
PriorityTask

High
PriorityTask

High
PriorityTask

Low Priority Task
Takes Lock

High Priority Task
Waits for Lock

Low Priority Task
Takes Lock

Low Priority Task
Releases Lock

High Priority Task has to
wait at the priority of the
low priority task!

High Priority Task has to
wait at the priority of the
low priority task!

Event 1 Event 2 Event 3

No Locks

With Lock

Priority InheritancePriority InheritancePriority InheritancePriority Inheritance

Low Priority
Task

Medium
Priority
Task

High
PriorityTask

Low Priority
Task Takes Lock

Low Priority Task
Releases Lock

High Priority
Task now
Waits at the
High priority

High Priority
Task now
Waits at the
High priority

Low Priority
Task

Medium
PriorityTask

High
PriorityTask

Priority
Boosted

Low
Priority
Task

Event 1 Event 2 Event 3

With Lock

Lock With
Priority
Inheritance

Effect of Violations of AssumptionsEffect of Violations of AssumptionsEffect of Violations of AssumptionsEffect of Violations of Assumptions

Can be managed
with good designs
Can be managed
with good designs

Stimulus Response

Average Response Latency

Increased Variability in Response LatencyIncreased Variability in Response Latency Deadline

Missed
Deadlines

Missed
Deadlines

Mixing Real-Time and non-Real-Time TasksMixing Real-Time and non-Real-Time TasksMixing Real-Time and non-Real-Time TasksMixing Real-Time and non-Real-Time Tasks

Non-Real-Time TasksNon-Real-Time Tasks

Real-Time TasksReal-Time Tasks

High Priority Work QueueHigh Priority Work Queue

P
R
I
O
R
I
T
Y

Real Time Priority Domain

Non-Real-Time PriorityDomain

Work Queue should be highest
priority because it services
the interrupt “bottom half”

Work Queue should be highest
priority because it services
the interrupt “bottom half”

Real Time tasks need to
be higher priority than
any non-real-time task

Real Time tasks need to
be higher priority than
any non-real-time task

Non-real-time tasks must
be lower priority than all
Real time tasks so that

they cannot interfere with
Real-time behavior

Non-real-time tasks must
be lower priority than all
Real time tasks so that

they cannot interfere with
Real-time behavior

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

