NuttX RTOS

NuttX 4

Realtime

Programming
Gregory Nutt

Overview |

* Interrupts

* Cooperative Scheduling
* Tasks

* Work Queues

* Realtime Schedulers

Real Time == Deterministic

Response Latency

Stimulus Response Deadline

Real time does not mean “fast” I
Real time systems have Deadlines I

{‘3@

Bare Metal / No-OS
Single Interrupt

External Stimulus generates Hardware Interrupt Request (IRQ)

Hardware
Response
from Software
Processing

Response Latency

Hardware
Interrupt
Return

Hardware
Interrupt
Vector

Very Simple! \
Hardware Interrupt
P ' b C e e e :
déf;@i?jsz??ngﬂﬁp; Deterministic if interrupts never disabled. I \o
W

disabled. 4

Bare Metal / No-OS
Nested Interrupts |
«— Response Latency ——

| Single Interrupt Handler I

4

THigh Priority 1

“ Medium Priority 1 b

| Low Priority

« Response Latency

No OS way: Extensive interrupt processing, prioritized interrupts
and, maybe, a main loop.

Bare Metal / No-OS
Cooperative Scheduling

Task A Task G

Task B Task F
Main,
Background
Task C LOOp Task E

* Round-Robin
* Non-premptive
* Cooperative
Scheduling

* State machines L ‘0
+ ad hoc strategies Non-deterministic! \ 4h ’!

Task D

RTOS Interrupts |

Interrupt Interrupt Interrupt Interrupt Interrupt

q \ ~
Signal Task A I Sl Teak 2 I | Signal Tas I
Signal Task D l

RTOS way:

* Minimal work performed in interrupt handlers
* Interrupt handlers only signal events to tasks
* RTOS scheduler manages realtime behavior

* Prioritized interrupts replaced with prioritized tasks {\
* No benefit in nesting interrupts { ') ?

Properties of NuttX Tasks |

* Task = A thread within an environment (like a Linux process)
* Thread = “Normal” sequence of instruction execution

* Each thread has its own stack

* Each thread has an execution priority managed by the OS
* Each thread is a member of a “task group”

* Share resources (like a Linux process)

* Can wait for events or resource availability

* Threads communicate via Interprocess Communications (IPC):
* POSIX Message Queues, Signals, Counting semaphores, etc.

* Standard / Linux compatible

* NuttX supports use of standard IPCs from interrupt handlers

{‘3@

RTOS Interrupt Processing

Stimulus REsae
Interrupt RTOS Scheduler

Reassess next
Handler

ready-to-run thread
Signals thread via IPC

Resumes thread if highest
priority, ready-to-run

Task Task

Suspended, Suspended,
Waiting for Thread awakened, Waiting for

el Processes interrupt related event Nesgt erert

Work Queues |

Interrupt
Handler E ------------ E
“Top Half” :

| . - edi Worker
* Prioritized *
: Work — Thread

“Bottom half”

Defer more
extended
interrupt
processing to
Worker Thread

* Priority Qeue

* Non-premptive e e L
> Wiatiy el rlenty Non-deterministic! |

* Inappropriate for Use with care!

extended processing ‘ 4 ') ?

Multiple Work Queues |

* Single high priority work queue
~= + |Intended for interrupt “bottom half”
* Should be highest priority

ple * Multiple low priority work queues
Low Priority Do Support priority inheritance

Multiple

Work Queues

<=0~ AT

* Use to implement asynchronous
/0O (AIO)

hread I\ |
Thread poo 4@@

Components of Response Latency |

* Stimulus Event
— Hardware interrupt processing.
— Delay may be extended if interrupts disabled

* Software interrupt processing
— Thread state save (for Context Switch)

* Interrupt handler processing
— IPC
— Task execution may delayed if it does not have priority

* Interrupt return
— State restore OR Interrupt Context Switch

* Thread processing

— Output response 4@?

Synchronous vs Asynchronous Context Switch |

Asynchronous Context Switch == Interrupt Context Switch
Critical part of realtime response

VERY efficient in NuttX... Near zero additional overhead

Synchronous Context Switch
Thread relinquishes CPU by waiting for event
NOT a critical part of realtime response

But may be important to overall performance and throughput

High Priority, Zero Latency Interrupts |

* Software interrupt processing overhead
— Thread state save and restore (for interrupt Context Switch)

* ARM Cortex-M*

— Can support direct vector to C-code
— Zero (software) latency

* NuttX implements with:
— Higher interrupt priority
— Direct vector to C code
— Indirect interrupt context switches via PENDSV

* Important to support:
— Very high rate interrupts

— Interrupts with very low latency requirements 4‘{}?

Realtime Schedulers |

Realtime behavior realized via OS scheduler

RTOS provides tools only enable realtime designs
But a bad application design may still not be realtime

Scheduling Disciplines:
Traditional / POSIX Schedulers
Deadline Scheduler (and other modern schedulers)

Rate Monotonic Scheduling (RMS)

Deadline Schedulers |

 Example: Linux SCHED_ DEADLINE
— Earliest Deadline First (EDF)

Highly managed

High processing overhead

Complex

Difficult to configure correctly
Non-standard

Not commonly used in a small RTOS
Not currently supported by NuttX

S N N N N Y

Standard / POSIX Schedulers |
Primary NuttX Specification: OpenGroup.org \

Standard Schedulers specified at OpenGroup.org:

SCHED FIFO
* For Managed latency
* Supports Rate Monotonic Scheduling (RMS)
SCHED RR
* Not realtime
* Time-slicing
* Balanced throughput
SCHED SPORADIC
* Dynamic prioritization to achieve processing budget
* For background tasks with guaranteed bandwidth

Response latency vs. Throughput trade-offs { 'i) ?

Rate Monotonic Scheduling |

. . . [|
Can achieve realtime behavior under

certain circumstances: Threads with shorter
periods/deadlines
* Strict priority scheduling are given higher
* Static priorities priorities
* Priorities assigned according to the rate
monotonic conventions |
And this unrealistic assumption: I

* No resource sharing

* No waiting for resources Priority Inversion /
* Example: hardware, queue, etc. Priority Inheritance
* No semaphores or locks.

* No disabling pre-emption
* No disabling interrupts (\
* No critical sections < h) ?

Priority Inversion

Event 1 Event 2 § Event 3

S High Priority Task has to

e H.'tg_? y wait at the priority of the
rionitytas vy _______ low priority task!
Medium
PriorityTask
Low Priority
Task
No Locks

High
PriorityTask

Medium
PriorityTask

Low Priority
Task
With Lock I Y Y

Low Priority Task High Priority Task Low Priority Task
Takes Lock Waits for Lock Releases Lock

Priority Inheritance

Event 1 Event 2 Event 3
High
PriorityTask
EEEEN --I\Ze-d-iu.r:]--
T Priority
EEEEEEEEEEEREER TaSk EEEEEREERN ‘lllllll
Low Priority
Task
With Lock 1
Lo High
Priority -
Task Priority Task .
: Medium I
IIIIIIIIIIIIII ; PriorityTaSk ‘lllllll
Low Priority 5 :
Task e
Priority : High Priority s
Lock With ’ Boosted : Task now
Priority : : Waits at the

Task Takes Lock Releases Lock

Inheritance |, priopity Low Priority Task High priority y |0>

Effect of Violations of Assumptions

Average Response Latency

Deadline

Missed
‘Deadlines I
Stimulus

T Can be managed Response |

with good designs < h) ?

Increased Variability in Response Latency |

Mixing Real-Time and non-Real-Time Tasks

Real Time Priority Domain Work Queue should be highest
priority because it services
the interrupt “bottom half”

Real-Time Tasks .

Real Time tasks need to
be higher priority than
any non-real-time task

EEEEEEEEEEEEEEEEEEEENEER Non-real-time tasks must
be lower priority than all
Real time tasks so that
they cannot interfere with
— Real-time behavior

<H4=XVO—XT

Non-Real-Time Tasks

Non-Real-Time PriorityDomain

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

