
1. Overall architecture of NuttX

1.1  What is an RTOS?

1.1.1 An RTOS as a library

NuttX, as with all RTOSs, is a collection of various features bundled as a library.  It does not execute 
except when either (1) the application calls into the NuttX library code, or (2) an interrupt occurs.  
There is no meaningful way to represent an architecture that is implemented as an library of user 
managed functions with an diagram.

You can however, pick any subsystem of an RTOS an represent that in some fashion.

1.1.2 Kernel Threads

There are some RTOS functions that are implemented by internal threads [to be provided].

1.2 The Scheduler
1.2.1 Schedulers and Operating Systems

An operating system is a complete environment for developing applications.  One important component
of an operating system is a scheduler:  That logic that controls when tasks or threads execute.  Actually,
more than that; the scheduler really determines what a task or a thread is!  Most tiny operating systems,
such as FreeRTOS are really not operating “systems” is the since or providing a complete operating 
environment.  Rather these tiny operating systems consist really only of scheduler.  That is how 
important the scheduler is.

1.2.1 Task Control Block (TCB)

In NuttX a thread is any controllable sequence of instruction execution that has its own stack.  Each 
task is represented by a data structure called a task control block or TCB.  That data structure is defined 
in the header file include/nuttx/sched.h.

1.2.2 Task Lists

These TCBs are retained in lists.  The state of a task is indicated both by the task_state field of the 
TCB and by a series of task lists.  Although it is not always necessary, most of these lists are prioritized
so that common list handling logic can be used (only the g_readytorun, the g_pendingtasks, 
and the g_waitingforsemaphore lists need to be prioritized).

All new tasks start in a non-running, uninitialized state:

volatile dq_queue_t g_inactivetasks;

This the list of all tasks that have been initialized, but not yet activated. NOTE:  This is the only 
list that is not prioritized.

When the task is initialized, it is moved to a read-to-run list.  There are two lists representing ready-to-



run threads and several lists representing blocked threads.  Here are the read-to-run threads:

volatile dq_queue_t g_readytorun;

This is the list of all tasks that are ready to run.  The head of this list is the currently active task; 
the tail of this list is always the idle task.

volatile dq_queue_t g_pendingtasks;

This is the list of all tasks that are ready-to-run, but cannot be placed in the g_readytorun 
list because:  (1) They are higher priority than the currently active task at the head of the 
g_readytorun list, and (2) the currently active task has disabled pre-emption.  These tasks will 
stay in this holding list until pre-emption is again enabled (or the until the currently active task 
voluntarily relinquishes the CPU).

Tasks in the g_readytorun list may become blocked.  In this cased, their TCB will be moved to 
one of the blocked lists.  When the block task is ready-to-run, its TCB will be moved back to either the 
g_readytorun to to the g_pendingtasks lists, depending up if pre-emption is disabled and 
upon the priority of the tasks.

Here are the block task lists:

volatile dq_queue_t g_waitingforsemaphore;

This is the list of all tasks that are blocked waiting for a semaphore.

volatile dq_queue_t g_waitingforsignal;

This is the list of all tasks that are blocked waiting for a signal (only if signal support has not 
been disabled)

volatile dq_queue_t g_waitingformqnotempty;

This is the list of all tasks that are blocked waiting for a message queue to become non-empty 
(only if message queue support has not been disabled).

volatile dq_queue_t g_waitingformqnotfull;

This is the list of all tasks that are blocked waiting for a message queue to become non-full 
(only if message queue support has not been disabled).

volatile dq_queue_t g_waitingforfill;

This is the list of all tasks that are blocking waiting for a page fill (only if on-demand paging is 
selected).

(Reference nuttx/sched/os_internal.h).

1.2.3 State Transition Diagram



The state of a thread can then be easily represented with this simple state transition diagram:

[to be provided]

1.2.4 Scheduling Policies

In order to be a real-time OS, an RTOS must support SCHED_FIFO.  That is, strict priority scheduling.
The thread with the highest priority runs.... Period.  The thread with the highest priority is always 
associated with the TCB at the head of the g_readytorun list.

NuttX supports one additional real-time scheduling policy:  SCHED_RR.  The RR stands for round-
robin and this is sometimes called round-robin scheduling.  In this case, NuttX supports timeslicing:  If 
a task with SCHED_RR scheduling policy is running, then when each timeslice elapses, it will give up 
the CPU to the next task that is at the same priority.  Note:  (1) If there is only one task at this priority, 
SCHED_RR and SCHED_FIFO are the same, and (2) SCHED_FIFO tasks are never pre-empted in this
way.

1.2.5 Task IDs

Each task is represented not only by a TCB but also by a numeric task ID.  Given a task ID, the RTOS 
can find the TCB; given a TCB, the RTOS can find the task ID.  So they are functionally equivalent.  
Only the task ID, however, is exposed at the RTOS/application interfaces.

1.3 NuttX Tasks
1.3.1Processes vs. Threads

In larger system OS such as Windows or Linux, you will often here the name processes used to refer to 
threads managed by the OS.  A process is more than a thread as we have been discussing so far.  A 
process is a protected  environment that hosts one or more threads.  By environment we mean the set of 
resources set aside by the OS but in the case of the protected environment of the process we are 
specifically referring its address space.

In order to implement the process' address space, the CPU must support a memory management unit 
(MMU).  The MMU is used to enforce the protected process environment.

However, NuttX was designed to support the more resource constrained, lower-end, deeply embedded 
MCUs.  Those MCUs seldom have an MMU and, as a consequence, can never support processes as are 
support by Windows and Linux.  So NuttX does not support processes.  NuttX will support an MMU 
but it will not use the MMU to support processes.  NuttX operates only in a flat address space. (NuttX 
will use the MMU to control the instruction and data caches and to support protected memory regions). 

1.3.2 NuttX Tasks and Task Resources

All RTOSs support the notion of a task.  A task is the RTOS's moral equivalent of a process.  Like a 
process, a task is a thread with an environment associated with it.  This environment is like 
environment of the process but does not include a private address space.  This environment is private 
and unique to a task.  Each task has its own environment



This task environment consists of a number of resources (as represented in the TCB).  Of interest in 
this discussion are the following.  Note that any of these task resources may be disabled in the NuttX 
configuration to reduce the NuttX memory footprint:

1. Environment Variables.  This is the collection of variable assignments of the form:

VARIABLE=VALUE

2. File Descriptors.  A file descriptor is a task specific number that represents an open resource (a 
file or a device driver, for example).

3. Sockets.  A socket descriptor is like a file descriptor, but the open resource in this case  is a 
network socket.

4. Streams.  Streams represent standard C buffered I/O.  Streams wrap file descriptors or sockets a
provide a new set of interface functions for dealing with the standard C I/O (like fprintf(), 
fwrite(), etc.).

In NuttX, a task is created using the interface task_create().  Reference: 
http://nuttx.sourceforge.net/NuttxUserGuide.html#taskcreate

1.3.3 The Pseudo File System and Device Drivers

A full discussion of the NuttX file system belongs elsewhere.  But in order to talk about task resources, 
we also need to have a little knowledge of the NuttX file system

NuttX implement a Virtual Files System (VFS) that may be used to communicate with a number of 
different entities via the standard open(), close(), read(), write(), etc. interfaces.  Like other
VFSs, the NuttX VFS will support file system mount points, files, directories, device drivers, etc.

Also, as with other VFSs, the NuttX file system will support psuedo-file systems, that is, file systems 
that appear as normal media but are really presented under programmatic control.  In Linux, for 
example, you have the /proc and the /sys psuedo-file systems.  There is no physical media 
underlying the pseudo-file system.

The NuttX root file system is always a psuedo-file system. This  is just the opposite from Linux. With 
Linux the root file system must always be some physical block device (if only an initrd ram disk). Then
once you have mounted the physical root file system, you can mount other file systems -- including
Linux psuedo-filesystems like /proc or /sys. With NuttX, the root file system is always a pseudo-
file system that does not require any underlying block driver or physical device. Then you can mount 
real filesystem in the pseudo-filesystem.

This arrangement makes life much easier for the tiny embedded world (but also
has a few limitations --- like where you can mount file systems). 

NuttX interacts with devices via device drivers – that is via software that controls hardware and 
conforms to certain NuttX conventions (see include/nuttx/fs/fs.h).  Device drivers are represented by 



device nodes in the pseudo-file system.  By convention, these device nodes are created in the /dev 
directory.

Now that have digressed a little to introduce the NuttX file system and device nodes, we can return to 
our discussion of  task resources.

1.3.4 /dev/console and Standard Streams

There are three special cases of  I/O:  stdin, stdout, and stderr.  These are type FILE* and 
correspond to file descriptors 0, 1, and 2 respectively.  When the very first thread is created (called the 
IDLE thread), the special device node /dev/console is opened.  /dev/console  provides the 
stdin, stdout, and stderr for the initial task

1.3.5 Inheritance of the Task Environment and I/O Redirection

When one task creates a new task, that new task inherits the task resources of its parent.  This includes 
all of the environment variables,  file descriptors, and sockets (NOTE: This inheritance can be limited 
by special options in the NuttX configuration).

So, if nothing special is done, then every task will use /dev/console for the standard I/O.  
However, a task may close file descriptor 0 through 2 and open a new device for standard I/O. Then 
any children tasks that are created will inherit that new re-directed standard I/O as well.  This 
mechanism is used throughout NuttX.  As examples:

 In the THTTPD server to redirect socket I/O to standard I/O for CGI tasks,
 In the Telnet server so that new tasks inherit the Telnet session.

1.3.6 Tasks vs. Pthreads

Systems like Linux also support POSIX pthreads.  In the Linux environment, the process is created 
with one thread running in it.  But by using interfaces like pthread_create(), you can create 
multiple threads that run and share the same process resources.

NuttX also supports POSIX pthreads and the NuttX pthreads also support this behavior.  That is, the 
NuttX POSIX pthreads also share the resources of the parent task.  However, since NuttX does not 
support process address environments, the difference is not so striking.  When a task creates a pthread, 
the newly create pthread will share the environment variables, file descriptors, sockets, and streams of 
the parent task.

Note:  These task resources are reference counted and will persist as long as thread in the task group is 
still active.

1.3.7 Process IDs/task IDs/pthread IDs

The term process ID is standard (usually abbreviated as pid) and used to identify a task in NuttX.  So, 
more technically, this number is a task ID as was described above.  Pthreads are also described by a 
pthread_t ID.  In NuttX, the pthread_t ID is also the same task ID.



2. The NuttX Initialization Sequence
2.1 Overview

At the highest level, the NuttX initialization sequence can be represented in three phases:

1. The hardware-specific power-on reset initialization,
2. NuttX RTOS initialization, and
3. Application Initialization.

This initialization sequence is really quite simple because the system runs in single-thread mode up 
until the point the that is starts the application.  That means that the initialization sequence is just 
simple, straight-line function calls.

Just before starting the application, the system goes to multi-threaded mode and things can get more 
complex.

Each of these will be discussed in more detail in the following paragraphs.

2.2 Power-On Reset Initialization.
2.2.1 Overview

The software begins execution when the processor is reset.  This usually at power-on, but all resets are 
basically the same where they occur because of power-on, pressing the reset button, or on a watchdog 
timer expiration.  The software that executes when the processor is reset is unique to the particular CPU
architecture and is not a common part of NuttX.  The kinds of things that must be done by the 
architecture-specific reset handling includes:

1. Putting the processor in its operational state.  This may include things like setting CPU modes; 
initializing co-processors, etc.

2. Setting up clocking so that the software and peripherals operate as expected,
3. Setting up the C stack pointer (and other processor registers)
4. Initializing memory,  and
5. Starting NuttX.

2.2.2 Memory Initialization

In C implementations, there are two general classes of variable storage.  First there are the initialized 
variables.  For example, consider the global variable x:

int x = 5;

The C code must be assured that after reset, the variable x has the value 5.  Initialized variable of this 
kind are retained in a special memory section called data (or .data).

Other variables are not initialized.  Like the global variable y:

int y;



But the C code will still expect y to have an initial value.  That initial value will be zero. All 
uninitialized variables of this this type have have the value zero.  These uninitialized variables are 
retained in a section called bss (or .bss).

When we say that the reset handling logic initializes memory, we mean two things:

1. It provides the (initial) values of the initialized variables by copying the values from FLASH 
into the .data section, and

2. It resets all of the uninitialized variables to zero.  It clears the .bss section.

2.2.3 STM32 F4 Reset

Lets walk through reset sequence of one particular processor.  Let's look at the NuttX initialization for 
the STM32 F4 MCU.  This reset logic can be found in to files:

1. nuttx/arch/arm/src/stm32_vectors.S
2. nuttx/arch/arm/src/stm32_start.c

nuttx/arch/arm/src/stm32_vectors.S

The roll of stm32_vectors.S in this reset sequence is very small.  This file provides all of  the 
STM32  exception vectors and power-on reset is simply another exception vector.  Some 
important things to note about this file:

1. .section  .vectors, "ax".  This pseudo operation will place all of the vectors 
into a special section call .vectors.  On of the STM32 F4 linker scripts is located at 
nuttx/configs/stm3240g-eval/nsh/ld.script.  In that file, you can see that , you can see 
that the section .vectors is forced to lie at the very beginning of FLASH memory.

The STM32 F4 can be configured to boot in different ways via strapping.  If it is 
strapped to boot from FLASH, then the STM32 FLASH memory will be aliased to 
address 0x0000 0000 when the reset occurs.  The is the address of the power-up reset 
interrupt vector.

2. The first two 32-bit entries in the vector table represent the power-up exception vector 
(which we know will be positioned at address 0x0000 0000 when the reset occurs).  
Those two entries are:

 
.word IDLE_STACK /* Vector  0: Reset stack pointer */
.word __start    /* Vector  1: Reset vector */

The Cortex-M family is unique in the way that is handles the reset vector.  Notice that there are 
two values:  the stack pointer for the start-up thread (the IDLE thread), and the entry point in the
IDLE thread.  When the reset occurs, the the stack pointer is automatically set to the first value 
and then the processor jumps to reset entry point __start specified in the second entry.  This 
means that the reset exception handling code can be implemented in C rather than assembly 
language.



nuttx/arch/arm/src/stm32_start.c

The reset vector __start lies in the file stm32_start.c and does the real, low-level 
architecture-specific initialization.  This initialization includes:

 stm32_clockconfig();  Initialize the PLLs and peripheral clocking needed by the
board.

 stm32_fpuconfig(); If the STM32 F4's hardware floating point is initialized, then 
configure the FPU and enable access to the FPU co-processors.

 stm32_lowsetup();  Enable the low-level UART.  This is done very early in 
initialization so that we can get serial debug output to the console as soon as possible.  If
you are doing a board bring-up this is very important.

 stm32_gpioinit();  Perform any GPIO remapping that is needed (this is a stub 
for the F4, but the F1 family requires this step).

 showprogress('A');  This simply outputs the character 'A' on the serial console 
(only if CONFIG_DEBUG is enabled).  If debug is enabled, you will always see the 
letters ABDE output on the console.  That output all comes from this file.

Next the memory is initialized:

 The .bss section is set to zero (Letter 'B' is then output if CONFIG_DEBUG is enabled), 
then

 The .data section is set to its initial values (The letter 'C' is output if debug is enabled),

Then board-specific logic is initialized:

 stm32_boardinitialize();  This function resides with the board-specific logic. 
For the case of the STM3240G-EVAL board, this board initialization logic can be found 
at configs/stm3240g-eval/src/up_boot.c.

For the case of the STM3240G-EVAL board, the stm32_boardinitialize() does the following 
operations:

 stm32_spiinitialize();  Initialize SPI chip selects if SPI is enabled.
 stm32_selectsram(); Configure the STM32 FSMC to support external SRAM if 

external SRAM support is enabled.
 up_ledinit(); Initialize the on-board LEDs if they are used.

When stm32_boardinitialize() returns to __start(), the low-level, architecture-
specific initialization is complete and NuttX is started:

 os_start(); This is the NuttX entry point.  It performs the next phase of RTOS-
specific initialization and then brings up the application.

The operations performed by os_start() are discussed in the next paragraph.

2.3 NuttX RTOS Initialization.



2.3.1 os_start()

When the ow-level, architecture-specific initialization is complete and NuttX is started by calling the 
function os_start().  This function resides in the file nuttx/sched/os_start.c.  The 
operations performed by os_start() are summarized below.  Note that many of these features can 
be disabled from the NuttX configuration file and in that case those operations are not performed:

1. Initializes some NuttX global data structures,
2. Initializes the TCB for the IDLE (i.e, the thread that the initialization is performed on),
3. kmm_initialize(); Initialize the memory manager (in most configurations, 

kmm_initialize() is an alias for the common mm_initialize()).
4. irq_initialize(); Initialize the interrupt handler subsystem.  This initializes only data 

structures; CPU interrupts are still disabled.
5. wd_initialize();  Initialize the NuttX watchdog timer facility,
6. clock_initialize(); Initialize the system clock,
7. timer_initialize(); Initialize the POSIX timer facilities,
8. sig_initialize(); Initialize the POSIX signal facilities,
9. sem_initialize(); Initialize the POSIX semaphore facilities,
10.  mq_initialize(); Initialize the POSIX message queue facilities,
11.  pthread_initialize(); Initialize the POSIX pthread facilities,
12. fs_initialize(); Initialize file system facilities,
13.  net_initialize(); Initialize networking facilities,

Up to this point, all of the initialization steps have only been software initializations.  Nothing has 
interacted with the hardware.  Rather, all of these steps simply prepared the environment so that things 
like interrupts and threads can function properly.  The next phases depend upon that setup.

14. up_initialize();  The processor specific details of running the operating system will be 
handled here.  Such things as setting up interrupt service routines and starting the clock are 
some of the things that are different for each  processor and hardware platform.  See below for a
specific example of the initialization steps performed by the ARM version of this function.

Then,

15. lib_initialize(); Initialize the C libraries.  This is done last because the libraries may 
depend on the above.

16. sched_setupidlefiles();  This is the logic that opens /dev/console and creates 
stdin, stdout, and stderr for the IDLE thread.  All tasks subsequently created by the 
IDLE thread will inherit these file descriptors.

17. os_bringup();  Create the initial tasks.  This will be described more below.
18. And finally enter the IDLE loop.  After completing the initialization, the roll of the IDLE thread

changes.  It is now becomes the thread that executes only when there is nothing else to do in the
system (hence, the name IDLE thread).

2.3.2 IDLE Thread Activities.

As mention, the IDLE thread is  the thread that executes only when there is nothing else to do in the 



system.  It has the lowest priority in the system.  It always has the priority 0.  It is the only thread that is
permitted to have the priority 0.  And it can never be blocked (otherwise, what would run then?).

As a result, the IDLE thread is always in the g_readytorun list and, in fact, since that list is 
prioritized, can guaranteed to always be the final entry at the tail of the g_readytorun list.

The IDLE is an an infinite loop.  But this does not make it a “CPU hog.”  Since it is the lowest priority, 
the it can be suspended whenever anything else needs to run.

The IDLE thread does two things in this infinite loop:

1. If the worker was not started (see os_bringup() below), then the IDLE thread will perform 
memory clean-up.  Memory clean is required to handle deferred memory deallocation. Memory 
allocations must be deferred when the memory is freed in a context where the software does not
have access to the heap and, hence, cannot truly free the memory (such as in an interrupt 
handler).  In this case, the memory is simply put into a list of freed memory and, eventually, 
cleaned up by the IDLE thread.

NOTE: The worker thread's primary function is as the “bottom half” for extended device driver 
processing.  If the worker thread was started, then it will run at a higher priority than the IDLE 
thread.  In this case, the worker thread will take over responsibility for cleaning up these 
deferred allocations.

2. up_idle();  Then the loop calls up_idle().  The operations performed by up_idle() 
are architecture- and board-specific.  In general, this is the location where CPU-specific reduced
power operations may be performed.

2.3.3 os_bringup()

This function is called at the very end of the initialization sequence in os_start(), just before 
entering the IDLE loop.  This function is located in nuttx/sched/os_bringup.c.  This function 
starts all of the required threads and tasks needed to bring up the system.  This function performed the 
following specific operations:

1. If on-demand paging is configured, this function will start the page fill task.  This is the task 
that runs in order to satisfy page faults in processors that have an MMU and in configurations 
where on-demand paging is enabled.

2. The, if so configured, this function starts the worker thread.  The worker thread may be used to 
execute any processing deferred to the worker thread via APIs provided in 
include/nuttx/wqueue.h.  The worker thread's primary function is as the “bottom half” 
for extended device driver processing but can be used for a variety of purposes.

3. Finally, os_bringup() will start the application task.  Be default this is the task whose entry 
has the name user_start().  user_start() is provided by application code and when it runs, 
it begins the application-specific phase of the initialization sequence as described below.

NOTE:  The default user_start() entry point can be changed to use one of the named 
applications used by NSH.  This is a start-up option that is not often used and will not be discussed 
further here.



2.3.2 STM32 F4 up_initialize()

All ARM-based MCUs share a common up_initialize() implementation provided at 
nuttx/arch/arm/common/up_initialize.c.  The operations perform by this common ARM
initialization will, however, call into facilities provided by the particular ARM chip.  For the STM32 
F4, those facilities would be provided by logic in files as nuttx/arch/arm/src/stm32.  The 
common ARM initialization sequence is:

1. up_calibratedelay();  One operation that must be performed during a CPU port is the 
calibration of timing delay loops.  If CONFIG_ARCH_CALIBRATION is defined, then 
up_initialize() will perform some specific operations for the calibration of the delay 
loop.  This, however, is not part of the normal initialization sequence.  
up_calibratedelay() is implemented within up_initialize.c.

2. up_addregion();  The basic heap was set up during processing by os_start(). However, if 
the board supports multiple, discontiguous memory regions, any addition memory regions can 
by added to the heap by this function.  For the STM32 F4, up_addregion() is implemented
in nuttx/arch/arm/src/stm32/stm32_allocateheap.c.

3. up_irqinitialize(); This function initialize the interrupt subsystem.  For the STM32 
F4, up_irqinitialize() is implemented in nuttx/arch/arm/src/stm32_irq.c.

4. up_pminitialize();  If CONFIG_PM is defined, the function must initialize the power 
management subsystem.  This MCU-specific function must be called very early in the 
initialization sequence before any other device drivers are initialized (since they may attempt to 
register with the power management subsystem).  There is no implementation of 
up_pminitialize() for any STM32 platform.

5. up_dmainitialize();  Initialize the DMA subsystem.  For the STM32 F4, this DMA 
initialization can be found in  nuttx/arch/arm/src/stm32_dma.c (which includes 
nuttx/arch/arm/src/stm32f4xxx_dma.c).

6. up_timerinit();  Initialize the system timer interrupt.  For the STM32 F4, this function initializes
the ARM Cortex-M SYSTICK timer and can be found at 
nuttx/arch/arm/src/stm32_timerisr.c.

7. devnull_register();   Registers the standard /dev/null.
8. Then this function initializes the console device (if any).  This means calling one of (1) 

up_serialinit(); for the standard serial driver (found at 
nuttx/arch/arm/src/stm32_serial.c for the STM32 F4), (2) 
lowconsole_init(); for the low-level, write-only serial console (found at 
nuttx/drivers/serial/lowconsole_init.c), or (2) ramlog_sysloginit() 
for the RAM console (found at nuttx/drivers/ramlog.c).

9. up_netinitialize();  Initialize the network.  For the STM32 F4, this function is in 
nuttx/arch/arm/src/stm32_eth.c.

10.  up_usbinitialize();  Initialize USB (host or device).  For the STM32 F4, this function 
is in nuttx/arch/arm/src/stm32_otgfsdev.c.

11. up_ledon(LED_IRQSENABLED); Finally, up_initialize() illuminates board-
specific LEDs to indicate the IRQs are now enabled.

2.3.2 STM32 F4 IDLE thread



The default STM32 F4 IDLE thread is located at nuttx/arch/arm/src/stm32_idle.c.  This 
default version does very little:

1. It includes a example, “skeleton” function that illustrates that kinds of things that you can do if 
CONFIG_PM is enabled (this example code is not fully implemented in the default IDLE logic).

2. The it executes the Cortex-M thumb2 instruction wfi which causes the CPU to sleep until the 
next interrupt occurs.

3.4 Application Initialization

At the conclusion of the OS initialization phase in os_start(), the user application is started by 
creating a new task at the entry point user_start().  There must be exactly one entry point called 
user_start() in every application built on top of NuttX.  Any additional initialization performed in
the user_start() function is purely application dependent.

3.4.1 A Simple Hello World Application

The simplest user application would be the “Hello, World!” example.  See apps/examples/hello.
Here is the whole example:

int user_start(int argc, char *argv[])
{
  printf("Hello, World!!\n");
  return 0;
}

In this case, no additional application initialization is needed.  It just “says hello” and exits.

3.5 Building NuttX with Board-Specific Pieces Outside the Source Tree

There are at least four ways to build NuttX with board-specific pieces outside the source tree:

1. make export. There is a make target called make export. It will build NuttX, then bundle all of 
the header files, libraries, start-up objects, and other build components into a .zip file. You can 
can move that .zip file into any build environment you  want. You even build NuttX under a 
DOS CMD window.

This make target is documented in the top level nuttx/README.txt file.

2. Replace apps/. You can replace the entire apps/ directory. If there is  nothing in the apps/ 
directory that you need, you can define  CONFIG_APPS_DIR in your .config file so that it 
points to a different, custom application directory. You can copy any pieces that you like from 
the old apps/ directory to your new, custom apps directory as necessary.

This is documented in NuttX/configs/README.txt and 
nuttx/Documentation/NuttxPortingGuide.html (Online at 
http://nuttx.sourceforge.net/NuttxPortingGuide.html#apndxconfigs  under Build options). And 
in the apps/README.txt file.



3. external Sub-directory. If you like the random collection of stuff in the apps/ directory but 
just want to expand the existing components with your own,  external sub-directory then there is
an easy way to that too:  You just create the symbolic link at apps/external that  redirects to your
application sub-directory. The apps/Makefile  will always automatically check for the existence 
of an apps/external directory and if it exists, it will automatically incorporate it into the build 
(you do not have to add it to the apps/.config file).

This feature of the apps/Makefile is documented only here.

You can, for example, create a script called install.sh that installs a custom application, 
configuration, and board specific directory.  This script might do something like the following:

 Copy your MyBoard directory to configs/MyBoard.
 Add a symbolic link to MyApplication at apps/external
 Configure NuttX usually by executing:

tools/configure.sh MyBoard/MyConfiguration

or simply by copying

defconfig->nutt.config,
setenv.sh->nuttx/setenv.sh, Make.defs->nuttx/Make.defs,
appconfig->apps/.config

Using the 'external' link makes it especially easy to add a 'built-in' application an existing 
configuration.

4.  Custom Links.  You add as many symbolically linked directories to apps/ as you would like:

 Add symbolic links in  apps/ to as many other directories as you want.
 Then just add the (relative) paths to the links in your appconfig file (that becomes the

apps/.config file).

That is basically the same as option #3 but doesn't use the magic external link and allows to 
add as many linked sub-directories as you want. The top-level apps/Makefile will always 
to build whatever in finds in the apps/.config file (plus the external link if present).

4 The NuttShell (NSH)

4.1 Overview

The NuttShell (NSH) is a simple shell application that may be used with NuttX.  It is described here:  
http://nuttx.sourceforge.net/NuttShell.html.  It supports a variety of commands and is (very) loosely 
based on the bash shell and the common utilities used in Unix shell programming.  That reference 
provides a good overview of NSH and will not be duplicated here.  Instead, the paragraphs in this 
section will focus on customizing NSH:  Adding new commands, changing the initialization sequence, 
etc.



4.2 The NSH Library and NSH Initialization

NSH is implemented as a library that can be found at apps/nshlib.   As a library, it can be custom 
built into any application that follows the NSH initialization sequence described below.   As an 
example, the code at apps/examples/nsh/nsh_main.c illustrates how to start NSH and the 
logic there was intended to be incorporated into your own custom code.  Although code was generated 
simply as an example,  in the end most people just use this example code as their application main() 
function.  That initialization performed by that example is discussed in the following paragraphs.

4.2.1 NSH Initialization sequence

The NSH start-up sequence is very simple.  As an example, the code at 
apps/examples/nsh/nsh_main.c illustrates how to start NSH.  It simple does the following:

1. If you have C++ static initializers, it will call your implementation of 
up_cxxinitialize() which will, in turn, call those static initializers.  For the case of the 
STM3240G-EVAL board, the implementation of up_cxxinitialize() can be found at 
nuttx/configs/stm3240g-eval/src/up_cxxinitialize.c.

2. This function then calls nsh_initialize() which initializes the NSH library.  
nsh_initialize() is described in more detail below.

3. If the Telnet console is enabled, it calls  nsh_telnetstart() which resides in the NSH 
library. nsh_telnetstart() will start the Telnet daemon that will listen for Telnet 
connections and start remote NSH sessions.

4. If a local console is enabled (probably on a serial port), then nsh_consolemain() is 
called.  nsh_consolemain() also resides in the NSH library.  nsh_consolemain() 
does not return so that finished the entire NSH initialization sequence.

4.2.2 nsh_initialize()

The NSH initialization function, nsh_initialize(), be found in apps/nshlib/nsh_init.c.    It 
does only three things:

1. nsh_romfsetc(); If so configured, it executes an NSH start-up script that can be found at
/etc/init.d/rcS in the target file system.   The nsh_romfsetc() function can be 
found in apps/nshlib/nsh_romfsetc.c.  This function will (1) register a ROMFS file 
system, then (2) mount the ROMFS file system.  /etc is the default location where a read-
only, ROMFS file system is mounted by nsh_romfsetc().

The ROMFS image is, itself, just built into the firmware. By default, this rcS start-up script contains 
the following logic:

# Create a RAMDISK and mount it at XXXRDMOUNTPOUNTXXX

mkrd -m XXXMKRDMINORXXX -s XXMKRDSECTORSIZEXXX XXMKRDBLOCKSXXX
mkfatfs /dev/ramXXXMKRDMINORXXX
mount -t vfat /dev/ramXXXMKRDMINORXXX XXXRDMOUNTPOUNTXXX

Where the XXXX*XXXX strings get replaced in the template when the ROMFS image is created:



 XXXMKRDMINORXXX will become the RAM device minor number.  Default: 0
 XXMKRDSECTORSIZEXXX will become the RAM device sector size
 XXMKRDBLOCKSXXX will become the number of sectors in the device.
 XXXRDMOUNTPOUNTXXX will become the configured mount point.  Default: /etc

By default, the substituted values would yield an rcS file like:

# Create a RAMDISK and mount it at /tmp

mkrd -m 1 -s 512 1024
mkfatfs /dev/ram1
mount -t vfat /dev/ram1 /tmp

This script will, then:

 Create a RAMDISK of size 512*1024 bytes at /dev/ram1,
 Format a FAT file system on the RAM disk at /dev/ram1, and then
 Mount the  FAT filesystem at a configured mountpoint, /tmp. 

This rcS template file can be found at apps/nshlib/rcS.template.  The resulting 
ROMFS file system can be found in  apps/nshlib/nsh_romfsimg.h.

2. nsh_archinitialize(); Next any architecture-specific NSH initialization will be 
performed (if any). For the STM3240G-EVAL, this architecture specific initialization can be 
found at configs/stm3240g-eval/src/up_nsh.c.  This it does things like:  (1) 
Initialize SPI devices, (2) Initialize SDIO, and (3) mount any SD cards that may be inserted.

3. nsh_netinit();  The nsh_netinit() function can be found in 
apps/nshlib/nsh_netinit.c.

4.4 NSH Commands
4.4.1 NSH Command Overview

NSH supports a variety of commands as part of the NSH program.  All of the NSH commands are 
listed in the NSH documentation at http://nuttx.sourceforge.net/NuttShell.html  #cmdoverview.  Not all 
of these commands may be available at any time, however.  Many commands depend upon certain 
NuttX configuration options.  You can enter the help command at the NSH prompt to see the 
commands actual available:

nsh> help

 For example, if network support is disabled, then all network-related commands will be missing from 
the list of commands presented by 'nsh> help'.  You can the specific command dependencies in the 
table at: 
file:///c:/cygwin/home/patacongo/projects/nuttx/nuttx/trunk/nuttx/Documentation/NuttShell.html#cmdd
ependencies.



4.4.1 Adding New NSH Commands

New Commands can be added to the NSH very easily.  You simply need to add two things:

1. The implementation of your command, and
2. A new entry in the NSH command table

Implementation of Your Command. For example, if I want to add a new a new command called 
mycmd to NSH, you would first implement  the mycmd code in a function with this prototype:

int cmd_mycmd(FAR struct nsh_vtbl_s *vtbl, int argc, char **argv);

The argc and argv are used to pass command line arguments to the NSH command.  Command line 
parameters are passed in a very standard way:  argv[0]  will be the name of the command, and 
argv[1] through argv[argc-1] are the additional arguments provided on the NSH command 
line.

The first parameter, vtbl, is special.  This is a pointer to session-specific state information.  You don't 
need to know the contents of the state information, but you do need to pass this vtbl argument when 
you interact with the NSH logic.  The only use you will need to make of the vtbl argument will be for
outputting data to the console.  You don't use printf() within NSH commands.  Instead you would 
use:

void nsh_output(FAR struct nsh_vtbl_s *vtbl, const char *fmt, …);

So if you only wanted to output “Hello, World!” on the console, then your whole command 
implementation might be:

int cmd_mycmd(FAR struct nsh_vtbl_s *vtbl, int argc, char **argv);
{

nsh_output(vtbl, “Hello, World!”);
return 0;

}

The prototype for the new command should be placed in apps/examples/nshlib/nsh.h.

Adding You Command to the NSH Command Table.  All of the commands support by NSH appear 
in a single table called:

const struct cmdmap_s g_cmdmap[]

That can be found in the file apps/examples/nshlib/nsh_parse.c.  The structure 
cmdmap_s is also defined in apps/nshlib/nsh_parse.c:

struct cmdmap_s
{
  const char *cmd;        /* Name of the command */
  cmd_t       handler;    /* Function that handles the command */
  uint8_t     minargs;    /* Minimum number of arguments (including command) */
  uint8_t     maxargs;    /* Maximum number of arguments (including command) */
  const char *usage;      /* Usage instructions for 'help' command */



};

This structure provides everything that you need to describe your command:  It name (cmd), the 
function that handles the command (cmd_mycmd()), the minimum and maximum number of 
arguments needed by the command, and a string describing the command line.  That last string is what 
is printed when enter “nsh> help”.

So, for you sample commnd, you would add the following the to the g_cmdmap[] table.

{ “mycmd”, cmd_mycmd, 1, 1, NULL },

This entry is particularly simply because mycmd is so simple.  Look at the other commands in 
g_cmdmap[] for more complex examples.

4.5 NSH “Built-In” Applications
4.5.1 Overview

In addition to these commands that are a part of NSH, external programs can also be executed as NSH 
commands.  These external programs are called “Built-In” Applications for historic reasons.  That 
terminology is somewhat confusing because the actual NSH commands as described above are truly 
“built-into”  NSH whereas these applications are really external to NuttX.

These applications are built-into NSH in the sense that they can be executed by simply typing the name
of the application at the NSH prompt.  Built-in application support is enabled with the configuration 
option CONFIG_NSH_BUILTIN_APPS.  When this configuration option is set, you will also be able 
to see the built-in applications if you enter “nsh> help”.  They will appear at the bottom of the list of 
NSH commands under:

Builtin Apps:

Note that no detailed help information beyond the name of the built-in application is provided.

4.5.2 Named Applications

Overview. The underlying logic that supports the NSH built-in applications is  called “Named 
Applications”.  The named application logic can be found at apps/namedapp.  This logic simply 
does the following:

1. It supports registration mechanism so that named applications can dynamically register 
themselves at build time, and

2. Utility functions to look up, list, and execute the named applications.

Named Application Utility Functions.  The utility functions exported by the named application logic 
are prototyped in apps/include/apps.h.  These utility functions include:

 int namedapp_isavail(FAR const char *appname); Checks for availability of 
application registered as appname during build time.

 const char *namedapp_getname(int index); Returns pointer to a name of built-



in application pointed by the index.  This is the utility function that is used by NSH in order to
list the available built-in applications when “nsh> help” is entered.

 int exec_namedapp(FAR const char *appname, FAR const char 
**argv);  Executes built-in named application registered during compile time.  This is the 
utility function used by NSH to execute the built-in application.

Autogenerated Header Files.  Application entry points with their requirements are gathered
together in two files when NuttX is first built:

1. apps/namedapp/namedapp_proto.h:  Prototypes of application task entry points.
2. apps/namedapp/namedapp_list.h: Application specific information and start-up 

requirements

Registration of Named Applications. The NuttX build occurs in several phases as different build 
targets are executed: (1) context when the configuration is established, (2) depend when target 
dependencies are generated, and (3) default (all) when the normal compilation and link operations are
performed.   Named application information is collected during the make context build phase.

An example application that can be “built-in” is be found in the apps/examples/hello directory.  Let's 
walk through this specific cause to illustrate the general way that built-in applications are created and 
how they register themselves so that they can be used from NSH.

apps/examples/hello.  The main routine for apps/examples/hello can be found in 
apps/examples/hello/main.c.  When CONFIG_EXAMPLES_HELLO_BUILTIN is defined, 
this main routine simplifies to:

int hello_main(int argc, char *argv[])
{
  printf("Hello, World!!\n");
  return 0;
}

This is the built in function that will be registered during the context build phase of the NuttX build.  
That registration is performed by logic in apps/examples/hello/Makefile.  But the build 
system gets to that logic through a rather tortuous path:

1. The top-level context make target is in nuttx/Makefile.  All build targets depend upon the 
context build target.  For the apps/ directory, this build target will execute the context target 
in the apps/Makefile.

2. The apps/Makefile will, in turn, execute the context targets in all of the configured sub-
directories.  In our case will include the Makefile in apps/examples.

3. And finally, the apps/examples/Makefile will execute the context target in all 
configured example sub-directores, getting us finally to apps/examples/Makefile 
(which is covered below).

4. At the conclusion of the context phase, the apps/Makefile will touch a file called 
.context in the apps/ directory, preventing any further configurations during any 
subsequent context phase build attempts.



NOTE:  Since this context build phase can only be executed one time.  Any subsequent configuration changes that 
you make will, then, not be reflected in the build sequence.  That is a common area of confusion.  Before you can 
instantiate the new configuration, you have to first get rid of the old configuration.  The most drastic way to this is:

make distclean

But then you will have to re-configuration NuttX from scratch.  But if you only want to re-build the configuration 
in the apps/ sub-directory, then there is a less labor-intensive way to do that.  The following NuttX make command 
will remove the configuration only from the apps/ directory and will let you continue without re-configuring 
everything:

make apps_distclean

Logic for the context target in apps/examples/hello/Makefile registers the hello_main() 
appliation in the namedapp's namedapp_proto.h and namedapp_list.h files.  That logic that 
does that in  apps/examples/hello/Makefile is abstracted below:

1. First, the Makefile includes apps/Make.defs:

include $(APPDIR)/Make.defs

This defines a macro called REGISTER that adds data to the namedapp header files:

define REGISTER
        @echo "Register: $1"
        @echo "{ \"$1\", $2, $3, $4 }," >> "$(APPDIR)/namedapp/namedapp_list.h"
        @echo "EXTERN int $4(int argc, char *argv[]);" >> "$(APPDIR)/namedapp/namedapp_proto.h"
endef

When this macro runs, you will see the output in the build “Register: hello”, that is a 
sure sign that the registration was successful.

2. The make file then defines the application name (hello), the task priority (default), and the 
stack size that will be allocated in the task runs (2Kb).

APPNAME         = hello
PRIORITY        = SCHED_PRIORITY_DEFAULT
STACKSIZE       = 2048

3. And finally, the Makefile invokes the REGISTER macro to added the hello_main() 
named application.  Then, when the system build completes, the hello command can be 
executed from the NSH command line.  When the hello command is executed, it will start the
task with entry point hello_main() with the default priority and with a stack size of 2Kb.

.context:
ifeq ($(CONFIG_EXAMPLES_HELLO_BUILTIN),y)
        $(call REGISTER,$(APPNAME),$(PRIORITY),$(STACKSIZE),$(APPNAME)_main)
        @touch $@
endif

Other Uses of Named Application.  The primary purpose of named applications is to support 
command line execution of applications from NSH.  However, there are two other uses of named 
applications that should be mentioned.

1. Named Start-Up main() function.  A named application can even be used as the main, start-



up entry point into your embedded software.  When the user defines this option in the NuttX 
configuration file:

CONFIG_BUILTIN_APP_START=<application name>

that application will be invoked immediately after system starts instead of the normal, default 
user_start() entry point.  Note that <application name> must be provided just as it 
would have been on the NSH command line.  For example, hello would result in 
hello_main() being started at power-up.

This option might be useful in some develop environments where you use NSH only during the 
debug phase, but want to eliminate NSH in the final product.  Setting 
CONFIG_BUILTIN_APP_START in this way will bypass NSH and execute your application 
just as if it were entered from the NSH command line.

2. binfs.  binfs is a tiny file system located at apps/namedapp/binfs.c.  This provides an 
alternative what of visualizing installed named applications.  Without binfs, you can see the 
installed named applications using the NSH help command.  binfs will create a tiny pseudo-file 
system mounted at /bin.  Using binfs, you can see the available named applications by listing 
the contents of  /bin directory.  This gives some superficial Unix compatibility, but does not 
really and any new functionality.

4.5.3. Synchronous Built-In Applications

By default, built-in commands started from the NSH command line will run asynchronously with NSH.
If you want to force NSH to execute commands then wait for the command to execute, you can enable 
that feature by adding the following to the NuttX configuration file:

CONFIG_SCHED_WAITPID=y

The configuration option enables support for the standard waitpid() RTOS interface. When that 
interface is enabled, NSH will use it to wait, sleeping until the built-in application executes to 
completion.

Of course, even with CONFIG_SCHED_WAITPID=y defined, specific applications can still be forced 
to run asynchronously by adding the ampersand (&) after the NSH command.

4.5.4 Application Configuration File

The appconfig File. A special configuration file is used to configure which applications are to be 
included in the build.  The source for this file is saved at 
configs/<board>/<configuration>/appconfig.  The existence of the appconfig file 
in the board configuration directory is sufficient to enable building
of applications.

The appconfig file is copied into the apps/ directory as .config when NuttX is configured.  
.config is included by the top-level apps/Makefile.  As a minimum, this configuration file must
define files to add to the CONFIGURED_APPS list like:



 CONFIGURED_APPS += examples/hello

Changes in the Works.  There are changes in the works that will obsolete the appconfig file.  
These changes will implement an automated configuration system for NuttX.  One consequence of this 
new configuration system is that the appconfig file will become obsolete and will be replaced by a 
new mechanism for selecting applications.   This new mechanism is not yet available, but is dicussed 
here:  http://tech.groups.yahoo.com/group/nuttx/message/1604.

4.6 Customizing NSH Initialization
4.6.1 Ways to Customize NSH Initialization

There are three ways to customize the NSH start-up behavior.  Here they are presented in order of 
increasing difficulty:

1. You can extend the initialization logic in  configs/stm3240g-eval/src/up_nsh.c. 
The logic there is called each time that NSH is started and is good place in particular for any 
device-related initialization.

2. You replace the sample code at  apps/examples/nsh/nsh_main.c with whatever start-
up logic that you want.  NSH is a library at apps/nshlib.  apps.examplex/nsh is just a 
tiny start-up function (user_start()) that that runs immediately and starts NSH. If you 
want something else to run immediately then you can write your write your own custom 
user_start() function and then start other tasks from your custom user_start().

3. NSH also supports a start-up script that executed when NSH first runs.  This mechanism has the
advantage that the start-up script can contain any NSH commands and so can do a lot of work 
with very little coding.  The disadvantage is that is is considerably more complex to create the 
start-up script.  It is sufficiently complex that is deserves its own paragraph.

4.6.2 NuttShell Start up Scripts

First of all you should look at 
file:///c:/cygwin/home/patacongo/projects/nuttx/nuttx/trunk/nuttx/Documentation/NuttShell.html#startu
pscript.  Most everything you need to know can be found there.  That information will be repeated and 
extended here for completeness.

NSH Start-Up Script. NSH supports options to provide a start up script for NSH. The start-up script 
contains any command support by NSH (i.e., that you see when you enter 'nsh> help'). In general this 
capability is enabled with CONFIG_NSH_ROMFSETC=y, but has several other related configuration 
options as described with the NSH-specific configuration settings 
(file:///c:/cygwin/home/patacongo/projects/nuttx/nuttx/trunk/nuttx/Documentation/NuttShell.html#nshc
onfiguration). This capability also depends on: 

 CONFIG_DISABLE_MOUNTPOINT=n.  If mount point support is disabled, then you cannot 
mount any file systems.

 CONFIG_NFILE_DESCRIPTORS < 4.  Of course you have to have file descriptions to use 
any thing in the file system.

 CONFIG_FS_ROMFS enabled.  This option enables ROMFS file system support



Default Start-Up Behavior. The implementation that is provided is intended to provide great 
flexibility for the use of Start-Up files. This paragraph will discuss the general behavior when all of the 
configuration options are set to the default values. 

In this default case, enabling CONFIG_NSH_ROMFSETC will cause NSH to behave as follows at NSH
start-up time: 

 NSH will create a read-only RAM disk (a ROM disk), containing a tiny ROMFS filesystem 
containing the following: 

`--init.d/
     `-- rcS

Where rcS is the NSH start-up script. 

 NSH will then mount the ROMFS filesystem at /etc, resulting in: 

|--dev/
|   `-- ram0
`--etc/
    `--init.d/
        `-- rcS

 By default, the contents of rcS script are: 

# Create a RAMDISK and mount it at /tmp

mkrd -m 1 -s 512 1024
mkfatfs /dev/ram1
mount -t vfat /dev/ram1 /tmp

 NSH will execute the script at /etc/init.d/rcS at start-up (before the first NSH prompt. 
After execution of the script, the root FS will look like: 

|--dev/
|   |-- ram0
|   `-- ram1
|--etc/
|   `--init.d/
|       `-- rcS
`--tmp/

Example Configurations. Here are some configurations that have CONFIG_NSH_ROMFSETC=y in 
the NuttX configuration file.  There might provide useful examples:

configs/hymini-stm32v/nsh2
configs/ntosd-dm320/nsh



configs/sim/nsh
configs/sim/nsh2
configs/sim/nx
configs/sim/nx11
configs/sim/touchscreen
configs/vsn/nsh

In most of these cases, the configuration sets up the default /etc/init.d/rcS script. The 
default script is here: apps/nshlib/rcS.template. (The funny values in the template like 
XXXMKRDMINORXXX get replaced via sed at build time).  This default configuration creates a ramdisk 
and mounts it at /tmp as discussed above.

If that default behavior is not what you want, then you can provide your own custom rcS script by 
defining CONFIG_NSH_ARCHROMFS=y in the configuration file.  The only example that uses a 
custom /etc/init.d/rcS file in the NuttX source tree is this one: configs/vsn/nsh.  The 
configs/vsn/nsh/defconfig file also has this definition:

CONFIG_NSH_ARCHROMFS=y -- Support an architecture specific ROMFS file.

Modifying the ROMFS Image. The contents of the /etc directory are retained in the file 
apps/nshlib/nsh_romfsimg.h OR, if CONFIG_NSH_ARCHROMFS is defined, 
include/arch/board/rcs.template). In order to modify the start-up behavior, there are three
things to study: 

1. Configuration Options. The additional CONFIG_NSH_ROMFSETC configuration options 
discussed with the other  NSH-specific configuration settings 
(file:///c:/cygwin/home/patacongo/projects/nuttx/nuttx/trunk/nuttx/Documentation/NuttShell.ht
ml#nshconfiguration).

 
2. tools/mkromfsimg.sh Script. The script tools/mkromfsimg.sh creates 
nsh_romfsimg.h. It is not automatically executed. If you want to change the configuration 
settings associated with creating and mounting the /tmp directory, then it will be necessary to 
re-generate this header file using the tools/mkromfsimg.sh script. 

The behavior of this script depends upon several things: 

 The configuration settings then installed configuration. 

 The genromfs tool  (available from http://romfs.sourceforge.net) or included within 
the NuttX buildroot toolchain.  There is a snapshot here: misc/tools/genromfs-
0.5.2.tar.gz.

 The xxd tool that is used to generate the C header files (xxd is a normal part of a 
complete Linux or Cygwin installation).

 The file apps/nshlib/rcS.template (OR, if CONFIG_NSH_ARCHROMFS is 
defined include/arch/board/rcs.template. 

3. rcS.template. The file apps/nshlib/rcS.template contains the general form of the



rcS file; configured values are plugged into this template file to produce the final rcS file. 

rcS.template. The default rcS.template, apps/nshlib/rcS.template, generates the 
standard, default apps/nshlib/nsh_romfsimg.h file.

If CONFIG_NSH_ARCHROMFS is defined in the NuttX configuration file, then a custom, board-
specific nsh_romfsimg.h file residing in configs/<board>/include will be used. NOTE 
when the OS is configured, include/arch/board will be linked to 
configs/<board>/include. 

As mention above, the only example that uses a custom /etc/init.d/rcS file in the NuttX source 
tree is this one: configs/vsn/nsh.  The custom script for the configs/vsn case is located at 
configs/vsn/include/rcS.template.

All of the startup-behavior is contained in rcS.template. The role of mkromfsimg.sh script is 
to (1) apply the specific configuration settings to rcS.template to create the final rcS, and (2) to 
generate the header file nsh_romfsimg.h containg the ROMFS file system image.   To do this,  
mkromfsimg.sh uses two tools that must be installed in your system:

1. The genromfs tool that is used to generate the ROMFS file system image.

2. The xxd tool that is used to create the C header file

You can find the generated ROMFS file system for the configs/vsn case here: 
configs/vsn/include/rcS.template


