| Made in '
C‘l

0sta

RJL‘-



About Me

Math/Physics - _ _
Digital Signal Processing
Math
e Computer Science
science

First mult-tasking, pre-emptive RTOS, 1982

Hewlett Packard
‘ Cooperative Schedulers _ :
Commercial Electronics

LaserJet POSIX RTOS, 1996

LaserJet Firmware Architect

‘ Costa Rica

NuttX Release to Open Source, 2007




Graduate School Days

/NG |
By L=

NI — NN . LINC-8




Hardware of First RTOS




Interrupt Driven — OS #1 (Bare Metal

No OS: Extensive interrupt

processing, prioritized
interrupts and, maybe, a main

loop.
Deterministic? No
Meet Deadlines? Maybe

Problems: Stacked, Can lose interrupts.

No waiting, all run to completion.




Main Loop — OS #1 (Cont'd

q

=

e Round-Robin

=
g -
-

o

* Non-premptive

Non-deterministic!

NS



Real Time == Deterministic

Real time does not mean “fast”

Real time systems have Deadlines




Queue — OS #2

Brief interrupt processing,
only queues work

till Non-deterministic!
High priority work still has to wait for

work in progress.




Main Loop with Cooperative Scheduler— OS #3

* Non-premptive
« Cooperative Scheduling

» Divide event processing up into pieces
 Manage with a state machine

* Reschedule to allow higher priority tasks
» Other ad hoc strategies

Still Non-deterministic!

High priority work still has to wait for
work in progress.




Foreground / Backgound Main Loops — OS #4

Context
Switch!

Paritially Deterministic m




Pre-emptive OS — OS #5

The DEC connection

Fully pre-emptible
Context switch:

Think setjmp/longjmp on steriods

Task Control Block (TCB)

Highest Priority
Ready-to-run task
is Running

Wait for signal,
semaphore,
message queue,
page fill,
stopped, etc.




RTOS Interrupt Processing

RTOS Scheduler
Reassess next
ready-to-run thread

Task Task
Suspended, Suspended,
Waiting for Waiting for

event Next event




RTOS Interrupts

No OS way: Extensive interrupt processing, prioritized interrupts and,
maybe, a main loop.

Signal Task A Signal Task B w _ m
Signal Task D

RTOS way:
* Minimal work performed in interrupt handlers

* Interrupt handlers only signal events to tasks

* RTOS scheduler manages real-time behavior

* Prioritized interrupts replaced with prioritized tasks \o
* No benefit in nesting interrupts (usually) \\V)




n Highest Priority

Ready-to-run tasks
are Running

Spinlocks

Assigned Task List

(not shown)




Rate Montonic Scheduline

Can achieve Real-Time behavior under
certain circumstances

Strict priority scheduling
Static priorities Threads with shorter periods/

I . d di t deadlines are assigned the
riorities aSS|g_ne accor_ Ing to highest priorities.
Rate Monotonic conventions

And this unrealistic assumption:
* No resource sharing

* No waiting for resources

 No semaphores or locks

* No critical sections

* No disabling pre-emption

* No disabling interrupts



Why POSIX?

Why not...

* Versus custom ad hoc OS interface

* POSIX device model vs HAL

* Like simpler FreeRTOS, ChibiOS, Zephyr, mbed, RIOT, etc.

At this point POSIX is the NuttX identity

* Portabllity

* Linux compatibility

* Complex build models: PROTECTED and KERNEL builds




* Priority Qeue
* Non-premptive

* Very high priority
* |Inappropriate for
extended processing

-
o
e R

Use with care!

2




Multiple Work Queues

* Single high priority work queue
* Intended for interrupt “bottom half”
* Should be highest priority

] Mullatiple * Multiple low priority work queues
ow Priority o tArity i ;
o Gl Suppor_t priority inheritance
* Use to implement asynchronous
/O (AlO)

Thread pool m



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

