
ClassScan
The component aims to provide a general-purpose library that can be used or extended to satisfy any potential usage pattern requiring [classscan]
information about the identity and structure of various classes provided by a given .ClassLoader

Goals

Implementation details (BCEL, ASM, etc.) shouldn't be allowed to "bleed out" into consumer-facing APIs.
any handling in the scanner must be pluggable. The underlying file systems on different systems are just too different.new URL()
Performance
Flexibility

Desired Capabilities

Filtering

Marker File

Multiple frameworks have a "marker" file that indicates a jar is eligible for processing. A consumer will want to be able to filter a jar based on the ClassScan
maker file criteria:

JSR-299 CDI - META-INF/beans.xml
JSR-314 (JSF2) - META-INF/faces-config.xml
JPA - META-INF/persistence.xml
service provider - META-INF/services/interface.to.be.implemented
Servlet/JSP - WEB-INF/web.xml (this is also marked by war suffix)

Content

Consumers will require different levels of granularity:

Elements in classpath (Jar or File locations)
Classes in each location
Interfaces of each class
Fields and/or methods of each class
Annotations on each of the above

Cache

Scan classpath and classes once for multiple consumers
Balance memory v. time

Development Ideas

These are and might not all be adopted; that's what the consenus-building process is for!ideas

Decompose into multiple modules to implement various subtasks in pluggable fashion.
Define SPIs for aforementioned subtasks such that a given module can simply declare which services it provides.
For implementations of a given service that may/must wrap other implementations, consider providing a default impl + a wrapper structure a la
JSF

High-Level Modules

api

Provides meta-model rooted at but centering on which org.apache.commons.classscan.MetaRegistry oacc.MetaClassLoader
emphasizes 's per-classloader organization.[classscan]

Defines basic SPIs for other high-level modules (assuming SPI approach)
spi to plug in URL handling
spi to plug in class digester
spi to plug in introspection of different typesClassLoader

Hierarchy Walking
Cache

BCEL

BCEL-based class digester available

#

xbean

xbean-finder could be plugged as a separate service impl

xbean-finder skips certain aspects of scanning (e.g. find all implementations of interface) unless configured otherwise. This is an interesting concept Foo
that might be extended profitably to an "iterative scan approach," allowing explicit requests for certain types of information to trigger a "deeper" scan than
that for which a given scanner impl is configured to do by default.

Reactor

This is perhaps the right level at which to provide higher-level mechanisms for working with the info in a . Based on the ideas of Mark MetaClassLoader
Struberg and concepts in the sandbox component (expected to be more or less subsumed by)[meiyo] [classscan]

Domain Specific Language parsers on top of hierarchy walker to filter which classes are of interest

Cache

With this approach, would have a default implementation that simply deferred to the available . The default implementation could MetaRegistry scanner
then be wrapped by a implementation that would provide a general-purpose cache for the class metadata (see "wrapper structure" idea MetaRegistry
under "development ideas"). This way caching could be implemented independently, and reusably, from scanning. This might or might not be compatible
with the "iterative scan approach" ideated in the section.Scanners

Testing the Implementation

Replace the xbean-finder clones in branches of the following

OpenEJB
TomEE
Geronimo
Struts
XBean

	ClassScan

