VisCacheStrategy
VFES - CacheStragey

One problem with libraries like vfs is that they cache some data to avoid successive access to the real file - simply to speed up things.
This cache might get stale - no it GET stale.
Currently VFS provides three strategies to workaround it:

® manual

® on resolve (the default)

® oncall

Note: It is not possible to use VFS. get Manager to configure the cacheStrategy. You have to create your own static class to create it.

manual cache strategy

Setup
St andar dFi | eSyst emvanager fs = new St andar dFi | eSyst enVanager () ;

fs.setCacheStrategy(CacheStrat egy. MVANUAL) ;
fs.init();

using this setup you have to use fi | eObj ect . refresh() to refresh your object with the filesystem

on_resolve

Setup
St andar dFi | eSyst emvanager fs = new St andar dFi | eSyst emvanager () ;

fs.setCacheStrategy(CacheStrat egy. ON_ RESOLVE) ;
fs.init();

every time you call f s. resol veFi | e() the file data will be refreshed. You still can use fi | eObj ect . ref resh() to refresh the data on demand.

on_call

Setup

St andar dFi | eSyst emvenager fs = new Standar dFi | eSyst emVanager () ;
fs.setCacheStrategy(CacheStrategy. ON_CALL);
fs.init();

Every time you call a method on the resolve file object the data will be refreshed with the filesystem. This will give you the behaviour you might expect from
a local file but also might be a hughe performance loss as it will greatly increase the network load.

You can also achieve this cache strategy by wrapping the file object in an or g. apache. conmons. vfs. cache. OnCal | Ref reshFi | eQoj ect

Fi |l eCbj ect fo = VFS. get Manager().resolveFile("....");
OnCal | RefreshFi | eObj ect foc = new OnCal | RefreshFi | eCbj ect (fo);

The difference to the above is, that in the first case you will always get the same file object instance and thus you can synchronize on it.

#

	VfsCacheStrategy

