
1.

CommonCrawl3
Refreshing Apache Tika's Large-scale Regression Corpus
Since the last efforts to refresh the regression corpus (see and), has added important ApacheTikaHtmlEncodingStudy TIKA-2038 Common Crawl
metadata items in the indices, including: , and . I opened to track progress on updating our corpus, and I mime-detected languages charset TIKA-2750
describe the steps taken here.

We are enormously grateful to Sebastian Nagel and Common Crawl for using Tika to detect file types and running it on the entire crawl. The synergy of
these two open source|data projects is phenomenal.

As always, we're enormously grateful to for hosting our regression testing vm.Rackspace

There are three primary goals of TIKA-2750: include more recent files, include more "interesting" files, and refetch some of the files that are truncated in
Common Crawl. I don't have a definition of interesting, but the goal is to include broad coverage of file formats and languages. See below on Coverage

.Metrics

While I recognize that the new metadata is automatically generated and may contain errors, this new metadata allows for more accurate oversampling of
file formats/charsets that are of interest.

I started by downloading the 300 index files for September 2018's crawl: CC-MAIN-2018-39 (~226GB).

The top 10 'detected mimes' are:

mime count

text/html 2,070,375,19
1

application
/xhtml+xml

749,683,874

image/jpeg 6,207,029

application/pdf 4,128,740

application/rss+xml 3,495,173

application
/atom+xml

2,868,625

application/xml 1,353,092

image/png 585,019

text/plain 492,429

text/calendar 470,624

Given the work on TIKA-2038 and the focus on country top level domains (TLDs), I also counted the number of by TLD and the number of mimes charsets
by TLD ().here

Finally, I calculated the counts for pairs of 'mime' (as alleged by the http-header) and the 'detected-mime', and that is available .here

Step 1: Select and Retrieve the Files from Common Crawl
My sense from our JIRA and our user list is that people are primarily interested in office-ish files (PDF, MSOffice, RTF, eml, etc) and/or HTML. I therefore
chose to break the sampling into three passes:

PDFs, MSOffice and other office-ish files 2. Other binaries 3. HTML/Text

I wanted to keep the corpus to below 1 TB and on the order of a few million files.

The sampling frame tables are available ; there's one sampling frame for each of the three file classes.here

NOTE: I hesitate even to use the terms "sampling and "sampling frame" because I do not mean to imply that I used much rigor. I manually calculated the
sampling frames based on the total counts so that we'd have roughly the desired number of files and file types. As I describe below, there some file types
that I thought we should have more of (e.g. 'octet-stream').

The code for everything described here is available on github

Office formats

The top 10 file formats of this category include:

mime count

https://cwiki.apache.org/confluence/display/TIKA/ApacheTikaHtmlEncodingStudy
https://issues.apache.org/jira/browse/TIKA-2038
http://commoncrawl.org/
https://issues.apache.org/jira/browse/TIKA-2750
http://www.rackspace.com
https://issues.apache.org/jira/secure/attachment/12945796/CC-MAIN-2018-39-mimes-charsets-by-tld.zip
https://issues.apache.org/jira/secure/attachment/12946585/CC-MAIN-2018-39-mimes-v-detected.zip
http://162.242.228.174/share/commoncrawl3/sampling_frames.zip
https://github.com/tballison/SimpleCommonCrawlExtractor

application/pdf 4,128,740

application/vnd.openxmlformats-officedocument.wordprocessingml.document 53,579

application/msword 52,087

application/rtf 22,509

application/vnd.ms-excel 22,067

application/vnd.openxmlformats-officedocument.spreadsheetml.sheet 16,290

application/vnd.oasis.opendocument.text 8,314

application/vnd.openxmlformats-officedocument.presentationml.presentation 6,835

application/vnd.ms-powerpoint 5,799

application/vnd.openxmlformats-officedocument.presentationml.slideshow 2,465

select mime, sum(count) cnt
from detected_mimes
where
(mime ilike '%pdf%'
 OR
 mime similar to '%(word|doc|power|ppt|excel|xls|application.
*access|outlook|msg|visio|rtf|iwork|pages|numbers|keynot)%'
)
group by mime
order by cnt desc

Given how quickly the tail drops off, we could afford to take all of the non-PDFs. For PDFs, we created a sampling frame by TLD.

We used to select files for downloading from Common Crawl.org.tallison.cc.index.mappers.DownSample

Other Binaries

These are the top 10 other binaries:

mime cnt

image/jpeg 6,207,029

application/rss+xml 3,495,173

application/atom+xml 2,868,625

application/xml 1,353,092

image/png 585,019

application/octet-stream 330,029

application/json 237,232

application/rdf+xml 229,766

image/gif 166,851

application/gzip 151,940

select mime, sum(count) cnt
from detected_mimes
where
(mime not ilike '%pdf%'
 and
 mime not similar to '%(word|doc|power|ppt|excel|xls|application.
*access|outlook|msg|visio|rtf|iwork|pages|numbers|keynot)%'
 and mime not ilike '%html%'
 and mime not ilike '%text%'
)
group by mime
order by cnt desc

I created the sampling ratios from for these by preferring non-xml, but likely text-containing file types. Further, I wanted to include a fairly large portion of oct
 so that we might be able to see how we can improve Tika's file detection.et-stream

We used to select files for downloading from Common Crawl.org.tallison.cc.index.mappers.DownSample

HTML/Text

For the HTML/text files, I wanted to oversample files that were not ASCII/UTF-8 English, and I wanted to oversample files that had no charset detected.

We used to select the files for downloading from Common Crawl.org.tallison.cc.index.mappers.DownSampleLangCharset

The Output

In addition to storing the files, I generated a table for each pull that included information stored in the WARC file, including information from the http-
headers as archived in Common Crawl. The three table files are available (116MB!).here

Step 2: Refetch Likely Truncated Files
Common Crawl truncates files at 1MB. We've found it useful to have truncated files in our corpus, but this disproportionately affects some file formats, such
as PDF and MSAccess files, and we wanted to have some recent, largish files in the corpus. We selected those files that were close to 1MB or were
marked as truncated:

select url,cc_digest from crawled_files
where
(cc_mime_detected ilike '%tika%'
or cc_mime_detected ilike '%power%'
or cc_mime_detected ilike '%access%'
or cc_mime_detected ilike '%rtf%'
or cc_mime_detected ilike '%pdf%'
or cc_mime_detected ilike '%sqlite%'
 or cc_mime_detected ilike '%openxml%'
 or cc_mime_detected ilike '%word%'
 or cc_mime_detected ilike '%rfc822%'
 or cc_mime_detected ilike '%apple%'
 or cc_mime_detected ilike '%excel%'
 or cc_mime_detected ilike '%sheet%'
 or cc_mime_detected ilike '%onenote%'
or cc_mime_detected ilike '%outlook%')
and (actual_length > 990000 or warc_is_truncated='TRUE')
order by random()

A rollup of the files that were to be refetched by mime type is here:

mime count

application/pdf 121,386

application/vnd.openxmlformats-officedocument.presentationml.presentation 3,929

application/x-tika-msoffice 3,830

application/vnd.ms-powerpoint 2,942

application/msword 2,783

application/vnd.openxmlformats-officedocument.wordprocessingml.document 2,722

application/x-tika-ooxml 2,612

application/vnd.openxmlformats-officedocument.presentationml.slideshow 1,663

application/rtf 1,569

application/vnd.ms-excel 1,186

The full table is .here

We used , a wrapper around 'wget' to re-fetch the files from the original URL. If the refetched file was > 50MB, we org.tallison.cc.WReGetter
deleted it; and if the refetch took longer than 2 minutes, we killed the process and deleted whatever bytes had been retrieved.

We refetched these files to a new directory and stored them by their new digest. Each thread in WReGetter wrote to a table to record the mapping of the
original digest to the new digest and whether the new file was successfully refetched and/or was too big. Because of limitations of disc space, we stopped
the refetch procedure after refetching 98,000 documents, comprising 440GB of data.

We then randomly deleted 80% of the original truncated files and moved the other 20% to /commoncrawl3_truncated.

http://162.242.228.174/share/commoncrawl3/CC-MAIN-2018-39_crawled_files_tables.zip
http://162.242.228.174/share/commoncrawl3/to_refetch.txt.gz

Finally, we moved the refetched files into the /commoncrawl3_refetched directory.

Step 3 – Areas for Improvements
We carried out this work on one of our TB drives. We have to figure out what to keep from our older commoncrawl2 collection and then merge the two
collections. We may consider deleting some of the ISO-8859-1/Windows-1252/UTF-8, English text files. We could also identify truncated files based on
parser exceptions and move those into /commoncrawl3_truncated.

Step 4 – Comparison of Contents
Top 20 "container" file mimes:

Mime Count

application/pdf 528,617

text/plain; charset=ISO-8859-1 184,019

application/msword 78,210

application/vnd.openxmlformats-officedocument.wordprocessingml.document 75,739

text/html; charset=UTF-8 75,156

text/plain; charset=windows-1252 74,144

text/plain; charset=UTF-8 56,462

application/octet-stream 54,278

application/zip 44,989

application/rss+xml 34,213

image/jpeg 30,968

application/atom+xml 28,934

image/png 28,173

text/html; charset=windows-1252 26,232

application/xhtml+xml; charset=UTF-8 25,130

text/html; charset=ISO-8859-1 24,515

application/vnd.google-earth.kml+xml 23,391

application/xhtml+xml; charset=windows-1252 22,304

application/vnd.openxmlformats-officedocument.spreadsheetml.sheet 22,084

application/rtf 21,811

Top 20 Languages (including embedded files) as identified by language id:

Language Number of Files

en 1,803,350

null 242,442

ru 155,934

de 109,953

fr 96,192

it 73,781

es 59,069

ja 50,941

pl 47,044

pt 35,490

ko 35,251

ca 30,717

fa 26,202

zh-cn 25,379

nl 23,554

ro 23,259

tr 23,111

da 21,967

br 21,420

vi 19,305

Code Coverage Metrics
Tobias Ospelt and Rohan Padhye (the author of) both noted on our dev list that we could use coverage analysis to https://github.com/rohanpadhye/jqf
identify a minimal corpus that would cover as much of our code base as possible. Obviously, a minimal corpus designed for our current codebase would
not be guaranteed to cover new features, and we'd want to leave plenty of extra files around in the hope that some of them would capture new code paths.

Nevertheless, if we could use jqf or another tool to reduce the corpus, that would help make our runs more efficient.

On , Tobias reported that his experiment with showed that it would take roughly four months on our single VM just to create traces TIKA-2750 afl-cmin.py
(~300 files per hour).

Other Resources
See for notes on a comparison of the output of pdftotext and Tika.ComparisonTikaAndPDFToText201811

#
https://issues.apache.org/jira/browse/TIKA-2750?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16676812#comment-16676812
https://cwiki.apache.org/confluence/display/TIKA/ComparisonTikaAndPDFToText201811

	CommonCrawl3

